Skip to main content
Log in

Analysis of secondary biochemical components in maize flour samples by NIR (near infrared reflectance) spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study was carried out to determine whether it is possible to detect secondary biochemical components in maize flour samples by near infrared reflectance (NIR) spectroscopy. Two hundred fifty maize samples were used as the material. Calibration models were developed for six different secondary biochemical components, namely amylose, amylopectin, lysine, tryptophan, zein, and phytic acid. The robustness of the calibration models (n = 200) was tested by external validation (n = 50). Results showed that NIR spectroscopy could be used to detect secondary quality components in maize. The most successful prediction model was for amylose content (SEP: 1.784%, RPD: 3.09, r = 0.963). Models for the other traits (amylopectin, zein, lysine, tryptophan, phytic acid) gave acceptable results (RPD > 2) for material screening purposes. Target traits subjected to calibration studies were found to be related to the different overtone regions of C–H, N–H and S–H bond vibrations in scanning the spectral region. It seems that it is necessary to improve the prediction performance of the models using different approaches, such as broadening the spectral area and/or using chemometric technique combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Blanco, I. Villarroya, NIR spectroscopy: a rapid-response analytical tool. Trends Anal. Chem. 21, 240–250 (2002)

    Article  CAS  Google Scholar 

  2. H. Cen, Y. He, Y, Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 18, 72–83 (2007)

    Article  CAS  Google Scholar 

  3. P. Sudhakar, P. Latha, P.V. Reddy, Kernel quality traits, in Phenotyping Crop Plants for Physiological and Biochemical Traits, ed. by P. Sudhakar, P. Latha, P.V. Reddy (Academic Press, Cambridge, 2016), pp. 87–94

    Chapter  Google Scholar 

  4. P.L. Pingali, Green revolution: impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. U.S.A. 109, 12302–12308 (2012)

    Article  CAS  Google Scholar 

  5. C.Ö. Egesel, F. Kahriman, Determination of quality parameters in maize grain by NIR reflectance spectroscopy. J. Agric. Sci. 12, 31–42 (2012)

    Google Scholar 

  6. B.A. Orman, R.A. Schumann, Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. J. Agric. Food Chem. 39, 883–886 (1991)

    Article  CAS  Google Scholar 

  7. Y. Zhang, L.-D. Zhang, Q.-L. Bai, S.-J. Chen, Nondestructive identification of different oil content maize kernels by near-infrared spectra. Guang Pu 29, 686–689 (2009)

    CAS  PubMed  Google Scholar 

  8. O.V. Brenna, N. Berardo, Application of near-infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids content in maize. J. Agric. Food Chem. 52, 5577–5582 (2004)

    Article  CAS  Google Scholar 

  9. A. Rosales, L. Galicia, E. Oviedo, C. Islas, N. Palacios-Rojas, Near-infrared reflectance spectroscopy (NIRS) for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs. J. Agric. Food Chem. 59, 10781–10786 (2011)

    Article  CAS  Google Scholar 

  10. T.M. Baye, T.C. Pearson, A.M. Settles, Development of a calibration to predict maize seed composition using single kernel near infrared spectroscopy. J. Cereal Sci. 43, 236–243 (2006)

    Article  CAS  Google Scholar 

  11. C.Ö. Egesel, F. Kahriman, N. Ekinci, I. Kavdir, M.B. Büyükcan, Analysis of fatty acids in kernel, flour, and oil samples of maize by NIR Spectroscopy using conventional regression methods. Cereal Chem. 93, 487–492 (2016)

    Article  CAS  Google Scholar 

  12. F. Kahrıman, İ. Onaç, F. Mert, F. Öner, C.Ö. Egesel, Determination of carotenoid and tocopherol content in maize flour and oil samples using near-infrared spectroscopy. Spectrosc. Lett. 52, 473–481 (2019)

    Article  Google Scholar 

  13. A.A. Mangalvedhe, M.C. Danao, M. Paulsmeyer, K.D. Rausch, V. Singh, J.A. Juvik, Anthocyanin determination in different corn hybrids using near infrared spectroscopy Written for presentation at the 2015 ASABE Annual International Meeting Sponsored by ASABE New Orleans. Louisiana 7004, 3–14 (2015)

    Google Scholar 

  14. Megazyme, Amylose/Amylopectin Assay Procedure K-amyl 09/14 for the Measurement of the Amylose and Amylopectin Contents of Starch, Megazyme Internatrional Ireland (2014)

  15. J.C. Yau, A.J. Bockholt, J.D. Smith, L.W. Rooney, R.D. De Waniska, Maize endosperm proteins that contribute to endosperm lysine content. Cereal Chem. 76, 668–672 (1999)

    Article  CAS  Google Scholar 

  16. L. Galicia, E. Nurit, A. Rosales, N. Palacios-Rojas, Maize nutrition quality and plant tissue analysis laboratory, Laboratory Protocols (2008)

  17. K. Dost, O. Tokul, Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal. Chim. Acta 558, 22–27 (2006)

    Article  CAS  Google Scholar 

  18. CWS Manual, Sensologic Calibration Workshop Version 2.02 (Sensologic Gmbh, Norderstedt, 2003)

    Google Scholar 

  19. CAMO Software AS, The Unscrambler Appendices: Method References, PDF from CAMO website, https://www.camo.com/helpdocs/The_Unscrambler_Method_References.pdf, CAMO Software AS (2019)

  20. J. Fontaine, B. Schirmer, J. Horr, Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. J. Agric. Food Chem. 2002(50), 3902–3911 (2002)

    Article  Google Scholar 

  21. M.R. Campbell, S.R. Mannis, H.A. Port, A.M. Zimmerman, D.V. Glover, Prediction of starch amylose content versus total grain amylose content in corn by near-infrared transmittance spectroscopy. Cereal Chem. 76, 552–557 (1999)

    Article  CAS  Google Scholar 

  22. P.N. Chiangmai, P. Yodmingkhwan, P. Nilprapruck, C. Aekatasanawan, M. Kanjanamaneesathian, Screening of phytic acid and inorganic phosphorus contents in corn inbred lines and F1 hybrids in tropical environment. Maydica 56, 331–339 (2011)

    Google Scholar 

  23. U. Konietzny, R. Greiner, Phytic Acid: Nutritional Impact. Encyclopedia of Food Sciences and Nutrition, 2nd edn. (Elsevier, London, 2003), pp. 4555–4563

    Book  Google Scholar 

  24. B. Cong, C. Maxwell, S. Luck, D. Vespestad, K. Richard, J. Mickelson, C. Zhong, Genotypic and environmental impact on natural variation of nutrient composition in 50 non-genetically modified commercial maize hybrids in North America. J. Agric. Food Chem. 63(22), 5321–5533 (2015)

    Article  CAS  Google Scholar 

  25. M. Tang, X. He, Y. Luo, L. Ma, X. Tang, K. Huang, Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize. J. Sci. Food Agric. 93, 1049–1054 (2013)

    Article  CAS  Google Scholar 

  26. A.C. Newton, T. Akar, J.P. Baresel, P.J. Bebeli, E. Bettencourt, K.V. Bladenopoulos, J.H. Czembor, D.A. Fasoula, A. Katsiotis, K. Koutis, M. Koutsika-Sotiriou, G. Kovacs, H. Larsson, M.A.A.P. de Carvalho, D. Rubiales, J. Russell, T.M.M. Dos Santos, M.C. Vaz Patto, Cereal landraces for sustainable agriculture. A review. Agron. Sustain. Dev. 30, 237–269 (2010)

    Article  Google Scholar 

  27. C.W. Chang, D.A. Laird, M.J. Mausbach, C.R. Hurburgh, Near-infrared reflectance spectroscopy - Principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65, 480–490 (2001)

    Article  CAS  Google Scholar 

  28. A.A. Vicente, M.A. Cerqueira, L. Hilliou, C.M.R. Rocha, Protein-based resins for food packaging, in Multifunctional and Nanoreinforced Polymers for Food Packaging, ed. by J.-M. Lagarón (Woodhead Publishing, Cambridge, 2011), pp. 610–648

    Chapter  Google Scholar 

  29. X. Fan, S. Tang, G. Li, X. Zhou, Non-invasive detection of protein content in several types of plant feed materials using a hybrid near infrared spectroscopy model. PLoS ONE 11(9), e0163145 (2016)

    Article  Google Scholar 

  30. B. H. Holder, Characterization of starch by vibrational spectroscopy [Dissertations & Theses in Food Science and Technology], University of Nebraska-Lincoln, Lincoln, Neb, USA (2012)

  31. T. Iwai, M. Takahashi, K. Oda, Y. Terada, K.T. Yoshida, Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiol. 160, 2007–2014 (2012)

    Article  CAS  Google Scholar 

  32. R. Zhao, X. Xu, J. Li, C. Li, J. Chen, Y. Liu, S. Zhu, Rapid determination of phytic acid content in cottonseed meal via near infrared spectroscopy. J. Near Infrared Spectrosc. 25, 188–195 (2017)

    Article  CAS  Google Scholar 

  33. C.C. Fertig, F. Podczeck, R.D. Jee, M.R. Smith, Feasibility study for the rapid determination of the amylose content in starch by near-infrared spectroscopy. Eur. J. Pharm. Sci. 21(2–3), 155–159 (2004)

    Article  CAS  Google Scholar 

  34. P.S. Sampaioa, A. Soares, A. Castanho, A.S. Almeida, J. Oliveira, C. Brites, Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics, algorithms. Food Chem. 242, 196–204 (2018)

    Article  Google Scholar 

  35. J.Y. Chen, Y. Miao, S. Sato, H. Zhang, Near infrared spectroscopy for determination of the protein composition of rice flour. Food Sci. Technol. Res. 14(2), 132–138 (2008)

    Article  CAS  Google Scholar 

  36. F. Kahriman, C.Ö. Egesel, Development of a calibration model to estimate quality traits in wheat flour using NIR (near infrared reflectance) spectroscopy. J. Agric. Sci. 43, 392–400 (2011)

    Google Scholar 

  37. D.F. Barbin, A.L.S.M. Felicio, D.-W. Sun, S.L. Nixdorf, E.Y. Hirooka, Application of infrared spectral techniques on quality and compositional attributes of coffee: an overview. Food Res. Int. 61, 23–32 (2014)

    Article  CAS  Google Scholar 

  38. Y. Ozaki, Near-infrared spectroscopy—its versatility in analytical chemistry. Anal. Sci. 28, 545–563 (2012)

    Article  CAS  Google Scholar 

  39. F. Kahrıman, F. Öner, F.M. Turk, A. Gökçe, E. Düzen, İ. Onaç, C.Ö. Egesel, Efficiency of different chemometric methods for determination of oil content in maize by NIR spectroscopy. VIII International Scientific Agriculture Symposium, "Agrosym 2017", Jahorina, Bosnia and Herzegovina, October 2017. Book of Proceedings, pp.788–793 (2017)

Download references

Acknowledgements

The authors acknowledge the financial support of the Scientific and Technological Research Council of Turkey (TUBITAK, Project ID: 215O867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Kahrıman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahrıman, F., Onaç, İ., Öner, F. et al. Analysis of secondary biochemical components in maize flour samples by NIR (near infrared reflectance) spectroscopy. Food Measure 14, 2320–2332 (2020). https://doi.org/10.1007/s11694-020-00479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00479-0

Keywords

Navigation