Skip to main content

Advertisement

Log in

Mandibular Shape, Ontogeny and Dental Development in Bonobos (Pan paniscus) and Chimpanzees (Pan troglodytes)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The postnatal ontogenetic patterns and processes that underlie species differences in African ape adult mandibular morphology are not well understood and there is ongoing debate about whether African ape faces and mandibles develop via divergent or parallel trajectories of shape change. Using three-dimensional (3D) morphometric data, we first tested when in postnatal development differences in mandibular shape are initially evident between sister species Pan troglodytes and P. paniscus. Next, we tested whether each species has a distinct and non-parallel trajectory of mandibular development. Mandibles sampled across a broad developmental range of wildshot bonobos (n = 44) and chimpanzees (n = 59) were radiographed and aged from their dental development. We then collected 3D landmark surface data from all the mandibles. A geometric morphometric analysis of size-corrected 3D data found that bonobos and chimpanzees had parallel and linear ontogenetic trajectories of mandibular shape change. In contrast, mandibular shape was statistically different between P. paniscus and P. troglodytes as early as infancy, suggesting that species shape differences are already established near or before birth. A linear and stable trajectory of shape change suggests that mandibular ontogeny in these apes is unimpacted by non-linear variation in tooth developmental timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann, R. R., & Krovitz, G. E. (2002). Common patterns of facial ontogeny in the hominid lineage. The Anatomical Record, 269(3), 142–147. doi:10.1002/ar.10119.

    Article  PubMed  Google Scholar 

  • Anemone, R. L., Watts, E. S., & Swindler, D. R. (1991). Dental development of known-age chimpanzees, Pan troglodytes (Primates, Pongidae). American Journal of Physical Anthropology, 86(2), 229–241. doi:10.1002/ajpa.1330860211.

    Article  Google Scholar 

  • Berge, C., & Penin, X. (2004). Ontogenetic allometry, heterochrony, and interspecific differences in the skull of African apes, using tridimensional Procrustes analysis. American Journal of Physical Anthropology, 124(2), 124–138. doi:10.1002/ajpa.10333.

    Article  PubMed  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boughner, J. C. (2002). Dental and mandibular growth in Papio and Pan. London: University College London (University of London).

    Google Scholar 

  • Boughner, J. C., & Dean, M. C. (2004). Does space in the jaw influence the timing of molar crown initiation? A model using baboons (Papio anubis) and great apes (Pan troglodytes, Pan paniscus). Journal of Human Evolution, 46(3), 255–277. doi:10.1016/j.jhevol.2003.11.007.

    Article  PubMed  Google Scholar 

  • Cobb, S. N. (2001). Form variation in the postnatal facial skeleton of the African apes. London: University of London.

    Google Scholar 

  • Cobb, S. N., & O’Higgins, P. (2004). Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 302(3), 302–321.

    PubMed  CAS  Google Scholar 

  • Collard, M., & O’Higgins, P. (2001). Ontogeny and homoplasy in the papionin monkey face. Evolution and Development, 3(5), 322–331. doi:10.1046/j.1525-142X.2001.01042.x.

    Article  PubMed  CAS  Google Scholar 

  • Creuzet, S., Couly, G., Vincent, C., & Le Douarin, N. M. (2002). Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development, 129(18), 4301–4313.

    PubMed  CAS  Google Scholar 

  • Daegling, D. J. (1996). Growth in the mandibles of African apes. Journal of Human Evolution, 30(4), 315–341. doi:10.1006/jhev.1996.0026.

    Article  Google Scholar 

  • Daegling, D. J., & Jungers, W. L. (2000). Elliptical fourier analysis of symphyseal shape in great ape mandibles. Journal of Human Evolution, 39(1), 107–122. doi:10.1006/jhev.2000.0402.

    Article  PubMed  CAS  Google Scholar 

  • Dean, M. C., & Beynon, A. D. (1991). Tooth crown heights, tooth wear, sexual dimorphism and jaw growth in hominoids. Zeitschrift fur Morphologie und Anthropologie, 78(3), 425–440.

    PubMed  CAS  Google Scholar 

  • Dean, M. C., & Wood, B. A. (1981). Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies. Folia Primatologica, 36(1–2), 111–127. doi:10.1159/000156011.

    Article  CAS  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. London: John Wiley.

    Google Scholar 

  • Fenart, R., & Deblock, R. (1973). Pan paniscus et Pan troglodytes craniometrie. Tervuren, Belgique: Musée Royal de l’Afrique Centrale.

    Google Scholar 

  • Goodall, C. R. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society London B, 53(2), 285–339.

    Google Scholar 

  • Jenkins, P. D. (1990). Catalogue of primates in the British museum (natural history) part V: The apes, superfamily Hominoidea. London: British Museum (Natural History).

    Google Scholar 

  • Johanson, D. C. (1974). Some metric aspects of permanent and deciduous dentition of pygmy chimpanzee (Pan paniscus). American Journal of Physical Anthropology, 41(1), 39–48. doi:10.1002/ajpa.1330410106.

    Article  Google Scholar 

  • Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449(7161), 427–432. doi:10.1038/nature06153.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R., Shah, N. F., & Buchanan, L. S. (2003). Ontogeny and phylogeny in papionin primates. Journal of Human Evolution, 45(4), 285–316. doi:10.1016/j.jhevol.2003.08.004.

    Article  PubMed  Google Scholar 

  • Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., & Slice, D. (1996). Advances in morphometrics. New York: Plenum Press.

    Google Scholar 

  • Mina, M., Wang, Y. H., Ivanisevic, A. M., Upholt, W. B., & Rodgers, B. (2002). Region- and stage-specific effects of FGFs and BMPs in chick mandibular morphogenesis. Developmental Dynamics, 223(3), 333–352. doi:10.1002/dvdy.10056.

    Article  PubMed  CAS  Google Scholar 

  • Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46(6), 679–697. doi:10.1016/j.jhevol.2004.03.006.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., Gunz, P., & Bookstein, F. L. (2005). Heterochrony and geometric morphometrics: A comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evolution and Development, 7(3), 244–258. doi:10.1111/j.1525-142X.2005.05027.x.

    Article  PubMed  Google Scholar 

  • Napier, P. H. (1981). Catalogue of primates in the British museum (natural history) part II: Family Cercopithecoidea, subfamily Cercopithecinae. London: British Museum (Natural History).

    Google Scholar 

  • O’Higgins, P., & Jones, N. (1998). Facial growth in Cercocebus torquatus: An application of three-dimensional geometric morphometric techniques to the study of morphological variation. Journal of Anatomy, 193(Pt 2), 251–272. doi:10.1046/j.1469-7580.1998.19320251.x.

    Article  PubMed  Google Scholar 

  • Ramirez Rozzi, F., & Lacruz, R. S. (2007). Histological study of an upper incisor and molar of a bonobo (Pan paniscus) individual. In S. E. Bailey & J.-J. Hublin (Eds.), Dental perspectives on human evolution: State of the art research in dental paleoanthropology (p. 163). Netherlands: Springer Netherlands.

    Chapter  Google Scholar 

  • Reid, D. J., Schwartz, G. T., Dean, C., & Chandrasekera, M. S. (1998). A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Journal of Human Evolution, 35(4–5), 427–448. doi:10.1006/jhev.1998.0248.

    Article  PubMed  CAS  Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59. doi:10.2307/2992207.

    Article  Google Scholar 

  • Shea, B. T. (1983a). Allometry and heterochrony in the African apes. American Journal of Physical Anthropology, 62(3), 275–289. doi:10.1002/ajpa.1330620307.

    Article  PubMed  CAS  Google Scholar 

  • Shea, B. T. (1983b). Paedomorphosis and neoteny in the pygmy chimpanzee. Science, 222(4623), 521–522. doi:10.1126/science.6623093.

    Article  PubMed  CAS  Google Scholar 

  • Shea, B. T. (1983c). Size and diet in the evolution of African ape craniodental form. Folia Primatologica, 40(1–2), 32–68. doi:10.1159/000156090.

    Article  CAS  Google Scholar 

  • Shea, B. T. (1985). An allometric perspective on the morphological and evolutionary relationships between pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees. In R. L. Susman (Ed.), The Pygmy Chimpanzee: Evolutionary biology and behaviour (pp. 89–130). New York: Plenum Press.

    Google Scholar 

  • Shea, B. T. (2002). Are some heterochronic transformations likelier than others? In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change (pp. 79–101). London: The Johns Hopkins University Press.

    Google Scholar 

  • Slice, D. (1993). Extensions, comparisons, and applications of superimposition methods for morphometric analysis. New York: State University of New York at Stony Brook.

    Google Scholar 

  • Smith, B. H., Crummet, T. L., & Brandt, K. L. (1994). Ages of eruption of primate teeth: A compendium for aging individuals and comparing life histories. Yearbook of Physical Anthropology, 37(S19), 177–231. doi:10.1002/ajpa.1330370608.

    Article  Google Scholar 

  • Taylor, A. B. (2002). Masticatory form and function in the African Apes. American Journal of Physical Anthropology, 117(2), 133–156. doi:10.1002/ajpa.10013.

    Article  PubMed  Google Scholar 

  • Taylor, A. B., & Groves, C. P. (2003). Patterns of mandibular variation in Pan and Gorilla and implications for African ape taxonomy. Journal of Human Evolution, 44(5), 529–561. doi:10.1016/S0047-2484(03)00027-7.

    Article  PubMed  Google Scholar 

  • Weinberg, S. M. (2002). Nonmetric variation in the skulls of human perinates. Pittsburg: University of Pittsburg.

    Google Scholar 

  • Williams, F. L., Godfrey, L. R., & Sutherland, M. R. (2002). Heterochrony and the evolution of Neanderthal and modern human craniofacial form. In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change (pp. 405–441). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Williams, F. L., Godfrey, L., & Sutherland, M. R. (2003). Diagnosing heterochronic perturbations in the craniofacial evolution of Homo (Neanderthals and modern humans) and Pan (P. troglodytes and P. paniscus). In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the genus Homo (pp. 295–319). Cambridge: Cambridge University Press.

    Google Scholar 

  • Zollikofer, C. P., & Ponce de Leon, M. S. (2004). Kinematics of cranial ontogeny: Heterotopy, heterochrony, and geometric morphometric analysis of growth models. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 302(3), 322–340.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nicholas Jones, Gary Schwartz, Sam Cobb, Nathan Jeffery, Kornelius Kupczik, Don Reid, William Harcourt-Smith and Wendy Dirks for ready support and helpful discussions in collecting and analyzing our data. Louise Humphrey and Paul O’Higgins offered invaluable comments on the study design and the statistical methods used here. We are indebted to the curators at the Natural History Museum, London, the Musée Royal de l’Afrique Centrale, Tervuren, the Powell-Cotton Museum, Kent, and the Royal College of Surgeons of England. This research was funded in part by The Overseas Research Students Awards Scheme and The Graduate School, UCL and by grants to MCD from The Leverhulme Trust and The Royal Society. Lastly, we thank two anonymous reviewers whose valuable comments and suggestions strengthened this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia C. Boughner.

Appendices

Appendices

Appendix 1

Table 4 Individual specimen ages (ARDA = approximate relative dental age, in years) for P. paniscus

Appendix 2

Table 5 Individual specimen ages (ARDA, in years) for P. troglodytes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boughner, J.C., Dean, M.C. Mandibular Shape, Ontogeny and Dental Development in Bonobos (Pan paniscus) and Chimpanzees (Pan troglodytes). Evol Biol 35, 296–308 (2008). https://doi.org/10.1007/s11692-008-9043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9043-6

Keywords

Navigation