Skip to main content

Advertisement

Log in

In Vitro Antiprotozoal Effects of Nano-chitosan on Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Treatment of parasitic infections with conventional drugs is associated with high toxicity, and undesirable side effects require cogent substitutions. Nanotechnology has provided novel approaches to synthesize nano-drugs to improve efficient antipathetic treatment.

Purpose

Nano-chitosan as a nontoxic antimicrobial agent was examined against three most prevalent protozoa in humans, Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis.

Methods

Chitosan extracted from Penicillium fungi was converted to nanoparticles to maximize its therapeutic properties. Safety of nano-chitosan was examined by determining its hemolytic property and toxicity on PC12 cells. The studied parasites were identified with RFLP-PCR and cultivation in relevant media. Characteristics of nano-chitosan as an useful and valuable curative compound was evaluated by FTIR, DLS and SEM. Dose dependent anti-parasitic effect of nano-chitosan was evaluated.

Results

The highest anti-parasitic activity of the nano-chitosan was observed at 50 μg/mL by which growth rates of cultivated P. falciparum, T. vaginalis and G. lamblia were inhibited by 59.5%, 99.4%, and 31.3%, respectively. The study demonstrated that nano-chitosan with the least toxicity, low side effects, and substantial efficacy deserved to be considered as an anti-parasitic nano-compound.

Conclusion

Nano-chitosan significantly inhibited protozoan growth in vitro promising to explore its use to combat parasitic infections. Further investigations covering extended sample size, in vivo experiments and optimizing the concentration used may lead to efficient treatment of protozoan diseases.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Forson AO, Arthur I, Ayeh-Kumi PF (2018) The role of family size, employment and education of parents in the prevalence of intestinal parasitic infections in school children in Accra. PLoS ONE 13(2):0192303. https://doi.org/10.1371/journal.pone.0192303

    Article  CAS  Google Scholar 

  2. Abbaszadeh MJ, Barkhori M, Rezaeian M, Mohebali M, Baigi V, Amiri S, Amirshekari MB et al (2020) Prevalence and associated risk factors of human intestinal parasitic infections: a population-based study in the southeast of Kerman province, southeastern Iran. BMC Infect Dis 20(1):12. https://doi.org/10.1186/s12879-019-4730-8

    Article  Google Scholar 

  3. Salehi S, Elmi T, Meamar AR, Basi A, Mirhosseini A, Namdari H, Ranjbar M (2018) Investigating the Prevalence of Enteric Opportunistic Parasitic Infections among Cancer Patients of a Teaching Hospital. IJHR 7(1):1–6

    Article  Google Scholar 

  4. Alum A, Rubino JR, Ijaz MK (2010) The global war against intestinal parasites–should we use a holistic approach? Int J Infect Dis 14(9):732–738. https://doi.org/10.1016/j.ijid.2009.11.036

    Article  Google Scholar 

  5. Ziaei Hezarjaribi H, Elmi T, Dayer MS, Gholami Sh, Fakhar M, Akbariqomi M, Ghaffarifar F (2015) systematic review of the effects of Iranian pharmaceutical plant extracts on Giardia lamblia. Asian Pac J Trop Dis 5(12):925–929. https://doi.org/10.1016/S2222-1808(15)60959-8

    Article  Google Scholar 

  6. World Health Organization (2019) Malaria report website: https://www.who.int/publications-detail/world-malaria-report-2019.

  7. Elmi T, Shafiee Ardestani M, Hajialiani F, Motevalian M, Mohamadi M, Zamani Z, Tabatabaie F (2020) Novel chloroquine loaded curcumin based anionic linear globular dendrimer G2: a metabolomics study on Plasmodium falciparum in vitro using 1H NMR spectroscopy. Parasitology 147(7):747–759. https://doi.org/10.1017/S0031182020000372

    Article  CAS  PubMed  Google Scholar 

  8. Kissinger P (2015) Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infect Dis 15:307. https://doi.org/10.1186/s12879-015-1055-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coleman JS, Gaydos CA, Witter F (2013) Trichomonas vaginalis vaginitis in obstetrics and gynecology practice: new concepts and controversies. Obstet Gynecol Surv 68(1):43–50. https://doi.org/10.1097/OGX.0b013e318279fb7d.PMID:23322080;PMCID:PMC3586271

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pires SM, Fischer-Walker CL, Lanata CF, Devleesschauwer B, Hall AJ et al (2015) Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS ONE 10(12):e0142927. https://doi.org/10.1371/journal.pone.0142927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Degarege A, Degarege D, Veledar E, Erko B, Nacher M, Beck-Sague CM, Madhivanan P (2016) Plasmodium falciparum infection status among children with Schistosoma in Sub-Saharan Africa: a systematic review and meta-analysis. PLoS Neglect Tropic Dis 10912:e0005193. https://doi.org/10.1371/journal.pntd.0005193

    Article  Google Scholar 

  12. Elmi T, Gholami Sh, Rahimi B, Geraili Z, Tabatabaie F (2017) Comparison of sensitivity of sucrose gradient, wet mount and formalin-ether in detecting protozoan Giardia lamblia in stool specimens of BALB/c mice. JPAM 11(1):105–109. https://doi.org/10.22207/JPAM.11.1.14

    Article  CAS  Google Scholar 

  13. Bartelt LA, Bolick DT, Mayneris-Perxachs J, Kolling GL, Medlock GL, Zaenker EI, Donowitz J et al (2017) Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathog 13(7):e1006471. https://doi.org/10.1371/journal.ppat.1006471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hernández Ceruelos A, Romero-Quezada LC, Ruvalcaba Ledezma JC, López Contreras L (2019) Therapeutic uses of metronidazole and its side effects: an update. Eur Rev Med Pharmacol Sci 23(1):397–401. https://doi.org/10.26355/eurrev_201901_16788

    Article  PubMed  Google Scholar 

  15. Chavez de Paz LE, Resin A, Howard KA, Sutherland DS, Wejse PL (2011) Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol 77(11):3892–3895. https://doi.org/10.1128/AEM.02941-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roshdy N, Kataia EM, Helmy A (2019) Assessment of antibacterial activity of 2.5% NaOCl, chitosan nano-particles against Enterococcus faecalis contaminating root canals with and without diode laser irradiation: an in vitro study. Acta Odontol Scand 77(1):39–43. https://doi.org/10.1080/00016357.2018.1498125

    Article  CAS  PubMed  Google Scholar 

  17. Chabra A, Rahimi-Esboei B, Habibi E, Elmi T, Valian H, Akhtari J, Fakhar M (2019) Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. Parasitology 146(9):1188–1198. https://doi.org/10.1017/S0031182019000325

    Article  CAS  PubMed  Google Scholar 

  18. Divya K, Vijayan S, George TK (2017) Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym 18:221–230. https://doi.org/10.1007/s12221-017-6690-1

    Article  CAS  Google Scholar 

  19. Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022

    Article  CAS  PubMed  Google Scholar 

  20. Abdul HP, Chaturbhuj K, Adnan AS, Nurul MR, Syakir MI, Davoudpour Y, Rafatullah M et al (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr Polym 150:216–226. https://doi.org/10.1016/j.carbpol.2016.05.028

    Article  CAS  Google Scholar 

  21. Moran HBT, Turley JL, Andersson M, Lavelle EC (2018) Immunomodulatory properties of chitosan polymers. Biomaterials 184:1–9. https://doi.org/10.1016/j.biomaterials.2018.08.054

    Article  CAS  PubMed  Google Scholar 

  22. Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084. https://doi.org/10.1021/cr030441b

    Article  PubMed  Google Scholar 

  23. Chanphai P, Tajmir-Riahi HA (2017) Encapsulation of testosterone by chitosan nanoparticles. Int J Biol Macromol 98:535–541. https://doi.org/10.1016/j.ijbiomac.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  24. Fakhar M, Chabra A, Rahimi-Esboei B, Rezaei F (2015) In vitro protoscolicidal effects of fungal chitosan isolated from Penicillium waksmanii and Penicillium citrinum. J Parasit Dis 39(2):162–167. https://doi.org/10.1007/s12639-013-0300-y

    Article  PubMed  Google Scholar 

  25. Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C (2012) Cationic polymers and their therapeutic potential. Chem Soc Rev 41(21):7147–7194. https://doi.org/10.1039/C2CS35094G

    Article  CAS  PubMed  Google Scholar 

  26. Wang D, Jiang W (2019) Preparation of chitosan-based nanoparticles for enzyme immobilization. Int J Biol Macromol 126:1125–1132. https://doi.org/10.1016/j.ijbiomac.2018.12.243

    Article  CAS  PubMed  Google Scholar 

  27. Martins GO, Segalla Petrônio M, Furuyama Lima AM, Martinez Junior AM, de Oliveira Tiera VA, de Freitas CM, Vilamaiorb PSL (2019) Amphipathic chitosans improve the physicochemical properties of siRNA-chitosan nanoparticles at physiological conditions. Carbohydr Polym 216:332–342. https://doi.org/10.1016/j.carbpol.2019.03.098

    Article  CAS  PubMed  Google Scholar 

  28. Safdar R, Omar AA, Arunagiri A, Regupathi I, Thanabalan M (2019) Potential of Chitosan and its derivatives for controlled drug release applications—a review. J Drug Deliv Sci Technol 49:642–659. https://doi.org/10.1016/j.jddst.2018.10.020

    Article  CAS  Google Scholar 

  29. Pan C, Qian J, Fan J, Guo H, Gou L, Yang H, Liang C (2019) Preparation nanoparticle by ionic cross-linked emulsified chitosan and its antibacterial activity. Colloids Surf A Physicochem 568:362–370. https://doi.org/10.1016/j.colsurfa.2019.02.039

    Article  CAS  Google Scholar 

  30. Lee HL, Wang RS, Hsu YC, Chuang CC, Chan HR, Chiu HC, Wang YB (2018) Antifungal effect of tissue conditioners containing poly [acryloyloxyethyltrimethyl ammonium chloride]-grafted chitosan on Candida albicans growth in vitro. J Dent Sci 13(2):160–166. https://doi.org/10.1016/j.jds.2017.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du Y, Zhao Y, Dai S, Yang B (2009) Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Iinnov Food Sci Emerg 10(1):103–107. https://doi.org/10.1016/j.ifset.2008.07.004

    Article  CAS  Google Scholar 

  32. Tripathy S, Mahapatra SK, Chattopadhyay S, Das S, Dash SK, Majumder S, Pramanik P, Roy S (2013) A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop 128(3):494–503. https://doi.org/10.1016/j.actatropica.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  33. Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ramezani A (2018) Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observation of such parasite in kidney. Sci Rep 8(1):11759. https://doi.org/10.1038/s41598-018-30103-7

    Article  CAS  Google Scholar 

  34. Jo HY, Kim Y, Park HW, Moon HW, Kim J, Kim DG, Paek SH (2015) The Unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Exp Neurobiol 24(3):235–245. https://doi.org/10.5607/en.2015.24.3.235

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mesdaghinia A, Pourpakc Z, Naddafia K, Nabizadeh Nodehia R, Alizadeh Z, Rezaei S, Mohammadi A, Faraji M (2019) An in vitro method to evaluate hemolysis of human red blood cells (RBCs) treated by airborne particulate matter (PM10). MethodsX 6:156–161. https://doi.org/10.1016/j.mex.2019.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kidima W, Nkwengulila G (2015) Plasmodium falciparum msp2 genotypes and multiplicity of infections among children under five years with uncomplicated malaria in Kibaha, Tanzania (2015). J Parasitol Res. https://doi.org/10.1155/2015/721201

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hooshyar H, Ghafarinasab S, Arbabi M, Delavari M, Rasti S (2017) Genetic variation of Giardia lamblia isolates from food-handlers in Kashan. Central Iran Iran J Parasitol 12(1):83–89

    PubMed  Google Scholar 

  38. Upcroft JA, Delgadillo-Correa MG, Dunne RL, Sturm AW, Johnson PJ, Upcroft P (2006) Genotyping Trichomonas vaginalis. Int J Parasitol 36(7):821–828. https://doi.org/10.1016/j.ijpara.2006.02.018

    Article  CAS  PubMed  Google Scholar 

  39. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675. https://doi.org/10.1126/science.781840

    Article  CAS  PubMed  Google Scholar 

  40. Bitencourt FG, de Brum VP, Meirelles LC, Rigo GV, da Silva EF, Gnoatto SCB, Tasca T (2018) Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative. Parasitol Res 117(5):1573–1580. https://doi.org/10.1007/s00436-018-5839-1

    Article  PubMed  Google Scholar 

  41. Pradines B, Bories C, Vauthier C, Ponchel G, Loiseau PM, Bouchemal K (2015) Drug-free chitosan coated poly(isobutylcyanoacrylate) nanoparticles are active against Trichomonas vaginalis and non-toxic towards pig vaginal mucosa. Pharm Res 32(4):1229–1236. https://doi.org/10.1007/s11095-014-1528-7

    Article  CAS  PubMed  Google Scholar 

  42. Meri T, Jokiranta TS, Suhonen L, Meri S (2000) Resistance of Trichomonas vaginalis to metronidazole: report of the first three cases from Finland and optimization of in vitro susceptibility testing under various oxygen concentrations. J Clin Microbiol 38(2):763–767

    Article  CAS  Google Scholar 

  43. Elmi T, Gholami S, Azadbakht M, Ziaei H (2014) Effect of chloroformic extract of Tanacetum parthenium in the treatment of Giardia lamblia infection in Balb/c mice. JMUMS23(1):157–65. https://jmums.mazums.ac.ir/article-1-3440-fa.html.

  44. Yarahmadi M, Fakhar M, Ebrahimzadeh MA, Chabra A, Rahimi-Esboei B (2016) The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro. J Parasitic Dis 40(1):75–80. https://doi.org/10.1007/s12639-014-0449-z

    Article  Google Scholar 

  45. Ficai D, Ardelean IL, Holban AM (2018) Manufacturing nanostructured chitosan-based 2D sheets with prolonged antimicrobial activity. Rom J Morphol Embryol 59(2):517–525

    PubMed  Google Scholar 

  46. Sadjjadi SM, Rostami J, Azadbakht M (2006) Giardiacidal activity of lemon juice, vinifer and vinegar on Giardia intestinalis cysts. Southeast Asian J Trop Med Public Health 37(suppl 3):24–27

    PubMed  Google Scholar 

  47. Wilczewska AZ, Niemirowicz-Laskowskaofia K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037. https://doi.org/10.1016/s1734-1140[12]70901-5

    Article  CAS  PubMed  Google Scholar 

  48. Elmi T, Gholami S, Fakhar M, Azizi F (2013) A review on the use of nanoparticles in the treatment. J Mazandaran Univ Med Sci 23(102):126–133. https://jmums.mazums.ac.ir/article-1-2396-fa.html.

  49. Gaafar MR, Mady RF, Diab RG, Shalaby TI (2014) Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 143:30–38. https://doi.org/10.1016/j.exppara.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  50. Akhtar F, Rizvi MM, Kar SK (2011) Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv 30(1):310–320. https://doi.org/10.1016/j.biotechadv.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  51. Mirnejad R, Mofazzal Jahromi MA, Al-Musawi S, Pirestani M, Fasihi Ramandi M, Ahmadi K, Rajayi H (2014) Curcumin-loaded Chitosan Tripolyphosphate Nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol 12(3):1012. https://doi.org/10.15171/IJB.1012

    Article  Google Scholar 

Download references

Acknowledgements

We should express our best gratitude to Pasteur Institute of Iran, Mazandaran University of Medical Sciences, and Faculty of Pharmacy, Tehran University of Medical Sciences, for providing P. falciparum strains and allowing us to use their biotechnology labs to prepare nano-chitosan. Also, we would like to take this opportunity to thank Iran University of Medical Sciences for providing the necessary fund to perform the present research.

Funding

This work was supported by Iran University of Medical Sciences (code: 97-4-4-13714).

Author information

Authors and Affiliations

Authors

Contributions

TE, BRE, ZZ, MF: conceived, analyzed data, and designed the study; MD, AC, FS, FH: performed experiments, provided samples; FT: supervised, and wrote the paper; MJN: wrote the paper.

Corresponding authors

Correspondence to Mohammad Javad Namazi or Fatemeh Tabatabaie.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest regarding the present study.

Ethical approval

This study was approved by the Ethical Committee of Iran University of Medical Sciences in accordance with Helsinki Declaration guidelines. In this regard, the ethical code of IR.IUMS.FMD.REC.1397.219 was designated to the present study.

Consent for publication

The authors declare that they have no competing interests regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmi, T., Rahimi Esboei, B., Sadeghi, F. et al. In Vitro Antiprotozoal Effects of Nano-chitosan on Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. Acta Parasit. 66, 39–52 (2021). https://doi.org/10.1007/s11686-020-00255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-020-00255-6

Keywords

Navigation