Skip to main content
Log in

Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

In order to improve the properties by chemical modification and to optimize the alkali concentration, we treated Borassus fruit fine fibers with aqueous sodium hydroxide solutions of different concentrations. In each case, the tensile properties of the fibers were determined. The morphology of the untreated and alkali treated fibers was observed using scanning electron microscope. The surface of the fibers became rough on alkali treatment. The tensile properties of the fibers improved on alkali treatment. The fibers attained maximum tensile properties when treated with 15% aqueous sodium hydroxide solution and decreased thereafter. The crystallinity index of the fibers showed a similar trend. The thermal stability of the alkali treated fibers was found to be higher than that of untreated fibers. Further, the char content was maximum for fibers treated with alkali having concentration of 15% and above. The chemical composition indicated that the percentageof α-cellulose was maximum when the fibers were treated with 15% aqueous sodium hydroxide solution and then decreased thereafter thus indicating the beginning of degradation of the fibers at higher concentrations. Thus, the optimum concentration of NaOH was established as 15% for alkali treatment of the Borassus fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolton J. 1995. The potential of plant fibers as crops for industrial use. Outlook on Agriculture, 24: 85–89.

    Google Scholar 

  • Bledzki AK, Gassan J. 1999. Composites reinforced with cellulose based fibers. Progress in Polymer Science, 24: 221-275.

    Article  CAS  Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J. 1996. Properties and modification methods for vegetable fibers for natural fiber composites. Journal Applied Polymer Science, 59: 1329–1336.

    Article  CAS  Google Scholar 

  • Chattopadhyay H, Sarkar PB. 1946. A New Method for the Estimation of Cellulose. Proceedings of the National Institute of Sciences of India, 12: 23–46.

    CAS  Google Scholar 

  • Das M, Chakraborty D. 2008. Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. Journal of Applied Polymer Science, 107: 522–527.

    Article  CAS  Google Scholar 

  • Doyle CD. 1985. Thermogravimetric Analysis, In: H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges and J.I. Kroschwitz (eds), Encyclopedia of Polymer Science and Engineering. New York: Wiley Interscience Publishers, pp. 1–41.

    Google Scholar 

  • Gassan J, Bledzki AK. 1997. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites: Part A, 28: 1001–1005.

    Article  Google Scholar 

  • Gassan J, Bledzki AK. 1999. Alkali treatment of jute fibers: Relationship between structure and mechanical properties. Journal of Applied Polymer Science, 71: 623–629.

    Article  CAS  Google Scholar 

  • George J, Bhagawan SS, Thomas S. 1998. Improved interactions in chemically modified pineapple leaf fiber reinforced polyethylene composites. Composite Interfaces, 5: 201–223.

    Article  CAS  Google Scholar 

  • Ghasemi I, Azizi H, Naeimian N. 2008. Rheological behaviour of polypropylene/kenaf fibre/wood flour hybrid composite. Iranian Polymer Journal, 17: 191–198.

    CAS  Google Scholar 

  • He J, Tang Y, Wang SY. 2007. Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction solid state 13C-CP/MAS NMR and second derivative FTIR spectroscopy data. Iranian Polymer Journal, 16: 807–818.

    CAS  Google Scholar 

  • John MJ, Anandjiwala RD. 2008. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites, 29: 187–207.

    Article  CAS  Google Scholar 

  • John MJ, Thomas S. 2008. Review: Biofibers and biocomposites. Carbohydrate Polymers, 71: 343–364.

    Article  CAS  Google Scholar 

  • Joseph, K., Thomas, S., Pavithran, C. 1996. Effect of chemical treatment on the tensile properties of short sisal fiber-reinforced polyethylene composites. Polymer, 37: 5139–5149.

    Article  CAS  Google Scholar 

  • Li XH, Meng YZ, Wang SJ, Varada Rajulu A, Tjong SC. 2004. Completely biodegradable composites of Poly (propylene carbonate) and short, lignocellulose fiber Hildegardia Populifolia. Journal Polymer Science Part B: Polymer Physics, 42: 666–675.

    Article  Google Scholar 

  • Liu D, Han G, Huang J, Zhang Y. 2009. Composition and structure study of natural nelumbo nucifera fiber. Carbohydrate Polymers, 75: 39–43.

    Article  CAS  Google Scholar 

  • Maheswari CU, Guduri BR, Rajulu AV. 2008. Properties of lignocellulose tamarind fruit fibers. Journal of Applied Polymer Science, 110: 1986–1989.

    Article  CAS  Google Scholar 

  • Moran JI, Alvarez VA, Cyras VP, Vazquez A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15: 149–159.

    Article  CAS  Google Scholar 

  • Mukherjee A, Ganguly PK, Sur D. 1993. Structural mechanics of jute: The effects of hemicellulose or lignin removal. Journal of the Textile Institute, 84: 348–353.

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP. 2002. Chemical modification of hemp, sisal, and kapok fibers by alkalization. Journal Applied Polymer Science, 84: 2222–2234.

    Article  CAS  Google Scholar 

  • Pandey KK. 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal Applied Polymer Science, 71: 1969–1975.

    Article  CAS  Google Scholar 

  • Pandey KK, Pitman AJ. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation 52: 151–160.

    Article  CAS  Google Scholar 

  • Pickering KL, Beckermann GW, Alam SN, Foreman NJ. 2007. Optimising industrial hemp fiber for composites. Composites: Part A, 38: 461–468.

    Article  Google Scholar 

  • Prasad SV, Pavithram C, Rohatgi PK. 1983. Alkali treatment of coir fibers for coir polyester composites. Journal of Materials Science, 18: 1443–1454.

    Article  CAS  Google Scholar 

  • Rajulu AV, Rao GB, Rao BRP, Reddy AM, He J, Zhang J. 2002. Properties of ligno-cellulose fiber hildegardia. Journal of Applied Polymer Science, 84: 2216–2221.

    Article  CAS  Google Scholar 

  • Ramudu JJ, Guduri BR, Rajulu AV. 2009. Characterization of natural fabric streculia urens. International Journal of Polymer Analysis and Characterization, 14: 115–125.

    Article  Google Scholar 

  • Ray D, Sarkar BK. 2001. Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science, 80: 1013–1020.

    Article  CAS  Google Scholar 

  • Reddy KO, Guduri BR, Rajulu AV. 2009b. Structural characterization and tensile properties of borassus fruit fibers. Journal of Applied polymer science, 114: 603–611.

    Article  CAS  Google Scholar 

  • Reddy KO, Maheswari CU, Reddy DJP, Rajulu AV. 2009a. Thermal properties of napier grass fiber. Materials letters, 63: 2390–2392.

    Article  CAS  Google Scholar 

  • Reddy KO, Reddy SG, Maheswari CU, Rajulu AV, Rao KM. 2010. Structural characterization of coconut tree leaf sheath fiber reinforcement. Journal of Forestry Research, 21: 53–58.

    Article  Google Scholar 

  • Reddy N, Yang Y. 2005. Biofibers from agricultural by products for industrial applications. Trends in Biotechnology, 23: 22–27.

    Article  CAS  PubMed  Google Scholar 

  • Reddy SS, Bhauduri SK, Sen SK. 1990. Infrared spectra of alkali treated jute stick. Journal of Applied Polymer Science, 41: 329–336.

    Article  CAS  Google Scholar 

  • Rout J, Tripathy SS, Nayak SK, Misra M, Mohanty AK. 2001. Scanning electon microscopy study of chemically modified coir fibers. Journal Applied Polymer Science, 79: 1169–1177.

    Article  CAS  Google Scholar 

  • Saha SC, Das BK, Ray PK, Pandey SN, Goswami K. 1991. Infrared spectra of raw and chemically modified pineapple leaf fibers (annanus comosus). Journal of Applied Polymer Science, 43: 1885–1890.

    Article  CAS  Google Scholar 

  • Sarkar PB, Mazumdar AK, Pal KB. 1948. The hemicelluloses of jute fibre. Journal of the Textile Institute, 39(T44): 44–58.

    Google Scholar 

  • Singha AS, Thakur VK. 2008. Fabrication of hibiscus sabdariffa fibre reinforced polymer composites. Iranian Polymer Journal, 17: 541–554.

    CAS  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340: 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Koo WM, Kim HD. 2003. Preparation and properties of new regenerated cellulose fibers. Textile Research Journal, 73: 998–1004.

    Article  CAS  Google Scholar 

  • Weyenberg IV, Truong TC, Vangrimde B, Verpoest I. 2006. Improving the properties of UD flax fiber reinforced composites by applying an alkaline fiber treatment. Composites: Part A, 37: 1368–1376.

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86: 1781–1788.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Obi Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obi Reddy, K., Shukla, M., Uma Maheswari, C. et al. Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. Journal of Forestry Research 23, 667–674 (2012). https://doi.org/10.1007/s11676-012-0308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-012-0308-7

Keywords

Navigation