Skip to main content
Log in

Tribo-corrosion and Albumin Attachment of Nitrogen Ion-Implanted CoCrMo Alloy During Friction Onset

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, CoCrMo alloy surface was implanted with 100 keV nitrogen ions to modify it. Bovine serum albumin (BSA) adsorption and the initial behavior of tribo-corrosion in the simulated system were studied. Nitrogen ion implantation can promote BSA dynamic adsorption due to the change of friction and wear mechanisms. From the tribo-corrosion test results, the open circuit potential (OCP) increased to about 0.6 V and the coefficient of friction (COF) decreased to about 0.2 for the nitrogen ion-implanted CoCrMo compared with the untreated sample before the modified layer failure. The point when the open circuit potential and the coefficient of friction changed during long wear time (1, 2 and 4 h) is considered the sign of the worn through modified layer. Then, the OCP of the implanted sample rose by 0.3 V compared with the untreated sample, and the COF remained at around 0.3, which is lower compared with the COF of untreated sample after the modified layer has been worn through. Thus, nitrogen ion implantation not only improved wear and corrosion resistance of the CoCrMo alloy, but also promoted BSA adsorption on the CoCrMo alloy surface, which effectively reduced the wear volume and metal ions release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Yamanaka, M. Mori, and A. Chiba, Effects of Nitrogen Addition on Microstructure and Mechanical Behavior of Biomedical Co-Cr-Mo Alloys, J. Mech. Behav. Biomed. Mater., 2014, 29, p 417–426

    Article  CAS  Google Scholar 

  2. C. Valero Vidal and A. Igual Muñoz, Study of the Adsorption Process of Bovine Serum Albumin on Passivated Surfaces of CoCrMo Biomedical Alloy, Electrochim. Acta, 2010, 55, p 8445–8452

    Article  CAS  Google Scholar 

  3. L.J. Zhao, W. Zai, M.H. Wong, and H.C. Man, Hydrothermal Synthesis of Ag-ZrO2/r-GO Coating on CoCrMo Substrate, Mater. Lett., 2018, 228, p 314–317

    Article  CAS  Google Scholar 

  4. Uğur Türkan, Orhan Öztürk, and Ahmet E. Eroğlu, Metal Ion Release from TiN Coated CoCrMo Orthopedic Implant Material, Surf. Coat. Technol., 2006, 200, p 5020–5027

    Article  Google Scholar 

  5. A. Bazzoni, S. Mischler, and N. Espallargas, Tribocorrosion of Pulsed Plasma-Nitrided CoCrMo Implant Alloy, Tribol. Lett., 2013, 49, p 157–167

    Article  CAS  Google Scholar 

  6. Z. Guo, X. Pang, Y. Yan, K. Gao, A.A. Volinsky, and T.-Y. Zhang, CoCrMo Alloy for Orthopedic Implant Application Enhanced Corrosion and Tribocorrosion Properties by Nitrogen Ion Implantation, Appl. Surf. Sci., 2015, 347, p 23–34

    Article  CAS  Google Scholar 

  7. J. Liu, X. Wang, B.J. Wu, T.F. Zhang, Y.X. Leng, and N. Huang, Tribocorrosion Behavior of DLC-Coated CoCrMo Alloy in Simulated Biological Environment, Vacuum, 2013, 92, p 39–43

    Article  CAS  Google Scholar 

  8. Y. Yan, A. Neville, and D. Dowson, Biotribocorrosion—An Appraisal of the Time Dependence of Wear and Corrosion Interactions: I, The Role of Corrosion, J. Phys. D Appl. Phys., 2006, 39, p 3200–3205

    Article  CAS  Google Scholar 

  9. G.J. Dienes, G.H. Vineyard, Radiation efects in solids, Interscience Publ., 1957.

  10. E. Johnson, T. Wohlenberg, and W. Grant, Crystalline Phase Transitions Produced by Ion Implantation, Phase Transit. A Multinatl. J., 1979, 1, p 23–33

    Article  CAS  Google Scholar 

  11. N. Hartley, Friction and Wear of Ion-Implanted Metals—A Review, Thin Solid Films, 1979, 64, p 177–190

    Article  CAS  Google Scholar 

  12. P. Goode, A. Peacock, and J. Asher, A Study of the Wear Behaviour of Ion Implanted Pure Iron, Nucl. Instrum. Methods Phys. Res., 1983, 209, p 925–931

    Article  Google Scholar 

  13. Y. Yan, A. Neville, and D. Dowson, Biotribocorrosion of CoCrMo Orthopaedic Implant Materials—Assessing the Formation and Effect of the Biofilm, Tribol. Int., 2007, 40, p 1492–1499

    Article  CAS  Google Scholar 

  14. C. Valero-Vidal, A. Igual-Munoz, C.O.A. Olsson, and S. Mischler, Adsorption of BSA on Passivated CoCrMo PVD Alloy: An EQCM and XPS Investigation, J. Electrochem. Soc., 2014, 161, p C294–C301

    Article  CAS  Google Scholar 

  15. C. Valero Vidal, A. Olmo Juan, and A. Igual Munoz, Adsorption of Bovine Serum Albumin on CoCrMo Surface: Effect of Temperature and Protein Concentration, Colloids and Surfaces. B, Biointerfaces, 2010, 80, p 1–11

    Article  CAS  Google Scholar 

  16. P. Budzynski, A.A. Youssef, and J. Sielanko, Surface Modification of Ti-6Al-4V Alloy by Nitrogen Ion Implantation, Wear, 2006, 261, p 1271–1276

    Article  CAS  Google Scholar 

  17. M.S. Oskooie, M.S. Motlagh, and H. Aghajani, Surface Properties and Mechanism of Corrosion Resistance Enhancement in a High Temperature Nitrogen Ion Implanted Medical Grade Ti, Surf. Coat. Technol., 2016, 291, p 356–364

    Article  CAS  Google Scholar 

  18. X.B. Tian, C.B. Wei, S.Q. Yang, R.K.Y. Fu, and P.K. Chu, Corrosion Resistance Improvement of Magnesium Alloy Using Nitrogen Plasma Ion Implantation, Surf. Coat. Technol., 2005, 198, p 454–458

    Article  CAS  Google Scholar 

  19. S. Ge, Q. Wang, D. Zhang, H. Zhu, D. Xiong, C. Huang, and X. Huang, Friction and Wear Behavior of Nitrogen Ion Implanted UHMWPE Against ZrO2 Ceramic, Wear, 2003, 255, p 1069–1075

    Article  CAS  Google Scholar 

  20. R.A.S.E. Leitâo and M.A. Barbosa, Electrochemical and Surface Modifications on N+ -ion-Implanted 316 L Stainless Steel, J. Mater. Sci. Mater. Med., 1997, 8, p 365–368

    Article  Google Scholar 

  21. B.B. Xiaodong Li, A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications, Mater. Charact., 2002, 48, p 11–36

    Article  Google Scholar 

  22. L. Qin, P. Lin, Y. Zhang, G. Dong, and Q. Zeng, Influence of Surface Wettability on the Tribological Properties of Laser Textured Co-Cr-Mo Alloy in Aqueous Bovine Serum Albumin Solution, Appl. Surf. Sci., 2013, 268, p 79–86

    Article  CAS  Google Scholar 

  23. D. Royhman, J.C. Yuan, T. Shokuhfar, C. Takoudis, C. Sukotjo, and M.T. Mathew, Tribocorrosive Behaviour of Commonly Used Temporomandibular Implants in a Synovial Fluid-Like Environment: Ti-6Al-4V and CoCrMo, J. Phys. D Appl. Phys., 2013, 46, p 1–9

    Article  Google Scholar 

  24. M.T. Mathew, M.J. Runa, M. Laurent, J.J. Jacobs, L.A. Rocha, and M.A. Wimmer, Tribocorrosion Behavior of CoCrMo Alloy for Hip Prosthesis as a Function of Loads: A Comparison Between Two Testing Systems, Wear, 2011, 271, p 1210–1219

    Article  CAS  Google Scholar 

  25. Y. Okazaki, Effects of Heat Treatment and Hot Forging on Microstructure and Mechanical Properties of Co-Cr-Mo Alloy for Surgical Implants, Mater. Trans., 2008, 49, p 817–823

    Article  CAS  Google Scholar 

  26. Q. Wang, L. Zhang, and J. Dong, Effects of Plasma Nitriding on Microstructure and Tribological Properties of CoCrMo Alloy Implant Materials, J. Bionic Eng., 2010, 7, p 337–344

    Article  Google Scholar 

  27. K. Holmberg, A Concept for Friction Mechanisms of Coated Surfaces, Surf. Coat. Technol., 1992, 56, p 1–10

    Article  CAS  Google Scholar 

  28. C. Myant, R. Underwood, J. Fan, and P.M. Cann, Lubrication of Metal-on-Metal Hip Joints: The Effect of Protein Content and Load on Film Formation and Wear, J. Mech. Behav. Biomed. Mater., 2012, 6, p 30–40

    Article  CAS  Google Scholar 

  29. D. Sun, J.A. Wharton, and R.J.K. Wood, Effects of Proteins and pH on Tribocorrosion Performance of Cast CoCrMo—A Combined Electrochemical and Tribological Study, Tribol. Mater. Surf. Interfaces, 2008, 2, p 150–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (51771025) and the Beijing Nova Program (Z171100001117075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolu Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Meng, J., Gao, K. et al. Tribo-corrosion and Albumin Attachment of Nitrogen Ion-Implanted CoCrMo Alloy During Friction Onset. J. of Materi Eng and Perform 28, 363–371 (2019). https://doi.org/10.1007/s11665-018-3769-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3769-9

Keywords

Navigation