Skip to main content

Advertisement

Log in

Sintering Response of Aluminum 6061-TiB2 Composite: Effect of Prealloyed and Premixed Matrix

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, Al6061-based alloy and composites were produced using powder metallurgy route. Two different kinds of base powders (prealloyed and premixed 6061Al alloy) were mixed with TiB2 particles in compositions ranging from 0 to 15 vol.%, respectively. The processed powders were compacted at 300 MPa and sintered at 620 °C under N2 atmosphere. The microstructural evolution of prealloyed and premixed 6061Al alloy, at different stages of sintering cycle, was studied using scanning electron microscope and EDS analysis. A comparative study was done between prealloyed- and premixed-based composites on the basis of densification, microstructure, hardness, transverse rupture strength and electrical conductivity as a function of TiB2 content. Results indicated that premixed-based composites have better mechanical properties than prealloyed-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.B. Schaffer, T.B. Sercombe, and R.N. Lumley, Liquid Phase Sintering of Aluminium Alloys, Mater. Chem. Phys., 2001, 67, p 85–91

    Article  Google Scholar 

  2. R.N. Lumley, T.B. Sercombe, and G.M. Schaffer, Surface Oxide and the Role of Magnesium During the Sintering of Aluminum, Metall. Mater. Trans. A, 1999, 30, p 457–463

    Article  Google Scholar 

  3. G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, and T.B. Sercombe, The Effect of the Atmosphere and the Role of Pore Filling on the Sintering of Aluminium, Acta Mater., 2006, 54, p 131–138

    Google Scholar 

  4. R.M. German, A Quantitative Theory for Supersolidus Liquid Phase Sintering, Powder Metall., 1991, 34, p 101–107

    Article  Google Scholar 

  5. M. Youseffi and N. Showaiter, PM Processing of Elemental and Prealloyed 6061 Aluminium Alloy with and Without Common Lubricants and Sintering Aids, Powder Metall., 2006, 49, p 240–252

    Article  Google Scholar 

  6. A. Ziani and S. Pelletier, Supersolidus Liquid-Phase Sintering Behavior of Degassed 6061 Al Powder, Int. J. Powder Metall., 1999, 35, p 49–58

    Google Scholar 

  7. E.M. Daver, W.J. Ullrich, and K. Balubhai Patel, Aluminium P/M parts-materials, production and properties, Key Engineering Materials, Vol. 30, P. Ramakrishnan, Ed., Trans Tech Publications, 1991, pp. 401–428

  8. H. Asgharzadeh and A. Simchi, Supersolidus Liquid Phase Sintering of Al6061/SiC Metal Matrix Composites, Powder Metall., 2009, 52, p 28–35

    Article  Google Scholar 

  9. N. Kumar, G. Gautam, R.K. Gautam, A. Mohan, and S. Mohan, Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review, J. Inst. Eng. Ser. D, 2016, 97(2), p 233-253

    Article  Google Scholar 

  10. J.M. Torralba, C.E. Da Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133, p 203–206

    Article  Google Scholar 

  11. C. Padmavathi and A. Upadhyaya, Densification, Microstructure and Properties of Supersolidus Liquid Phase Sintered 6711Al-SiC Metal Matrix Composites, Sci. Sinter., 2010, 42, p 363–382

    Article  Google Scholar 

  12. Y. Xian, X. Pang, S. He, W. Wang, X. Wang, and P. Zhang, Microstructure and Mechanical Properties of Al6061-31vol.% B4C Composites Prepared by Hot Isostatic Pressing, J. Mater. Eng. Perform., 2015, 24, p 4044–4053

    Article  Google Scholar 

  13. S.C. Tjong and K.F. Tam, Mechanical and Thermal Expansion Behavior of Hipped Aluminum-TiB2 Composites, Mater. Chem. Phys., 2006, 97, p 91–97

    Article  Google Scholar 

  14. S. Suresh and N.S.V. Moorthi, Process Development in Stir Casting and Investigation on Microstructures and Wear Behavior of TiB2 on Al6061 MMC, Procedia Eng., 2013, 64, p 1183–1190

    Article  Google Scholar 

  15. R.M. German, Powder metallurgy science, Met. Powder Ind. Fed. 105 Coll. Rd. E, Princeton, NJ 08540, USA (1984)

  16. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater. Sci., 2015, 74, p 401–477

    Article  Google Scholar 

  17. G. O’donnell and L. Looney, Production of Aluminium Matrix Composite Components Using Conventional PM Technology, Mater. Sci. Eng. A, 2001, 303, p 292–301

    Article  Google Scholar 

  18. V.V. Dabhade, T.R.R. Mohan, and P. Ramakrishnan, Sintering Behavior of Titanium-Titanium Nitride Nanocomposite Powders, J. Alloys Compd., 2008, 453, p 215–221

    Article  Google Scholar 

  19. J.M. Martin and F. Castro, Liquid Phase Sintering of P/M Aluminium Alloys: Effect of Processing Conditions, J. Mater. Process. Technol., 2003, 143, p 814–821

    Article  Google Scholar 

  20. Y. Xue, R. Shen, S. Ni, D. Xiao, and M. Song, Effects of Sintering Atmosphere on the Mechanical Properties of Al-Fe Particle-Reinforced Al-Based Composites, J. Mater. Eng. Perform., 2015, 24, p 1890–1896

    Article  Google Scholar 

  21. N. Showaiter and M. Youseffi, Compaction, Sintering and Mechanical Properties of Elemental 6061 Al Powder With and Without Sintering Aids, Mater. Des., 2008, 29, p 752–762

    Article  Google Scholar 

  22. A.P. Savitskii and L.S. Martsunova, Effect of Solid-State Solubility on the Volume Changes Experienced by Aluminum During Liquid-Phase Sintering, Powder Metall. Met. Ceram., 1977, 16, p 333–337

    Article  Google Scholar 

  23. C. Padmavathi, A. Upadhyaya, and D. Agrawal, Effect of Microwave and Conventional Heating on Sintering Behavior and Properties of Al-Mg-Si-Cu Alloy, Mater. Chem. Phys., 2011, 130, p 449–457

    Article  Google Scholar 

  24. T. Schubert, T. Pieczonka, S. Baunack, and B. Kieback, The Influence of the Atmosphere and Impurities on the Sintering Behaviour of Aluminium, Euro PM2005, Sintering, 2005, 1, p 3–8

    Google Scholar 

  25. G.B. Schaffer, J.-Y. Yao, S.J. Bonner, E. Crossin, S.J. Pas, and A.J. Hill, The Effect of Tin and Nitrogen on Liquid Phase Sintering of Al-Cu-Mg-Si Alloys, Acta Mater., 2008, 56, p 2615–2624

    Article  Google Scholar 

  26. M. Paidpilli, K. Verma, R. Pandey, and A. Upadhyaya, Effect of Lead Addition and Milling on Densification and Mechanical Properties of 6061 Aluminium Alloys, Trans. Indian Inst. Met., 2016, doi:10.1007/s12666-016-1024-3

    Google Scholar 

  27. R.L. Coble, D. Kolar, S. Pejovnik, and M.M. Ristic, Sintering-Theory and Practice, Mater. Sci. Monogr., 1982, 14, p 145

    Google Scholar 

  28. R.M. German, Sintering Theory and Practice, Wiley-VCH, Weinheim, 1996, ISBN 0-471-05786-X

    Google Scholar 

  29. C. Padmavathi and A. Upadhyaya, Sintering Behaviour and Mechanical Properties of Al-Cu-Mg-Si-Sn Aluminum Alloy, Trans. Indian Inst. Met., 2011, 64, p 345–357

    Article  Google Scholar 

  30. L. Tian, I. Anderson, T. Riedemann, and A. Russell, Modeling the Electrical Resistivity of Deformation Processed Metal-Metal Composites, Acta Mater., 2014, 77, p 151–161

    Article  Google Scholar 

  31. D. Kwon, T.D. Nguyen, K.X. Huynh, P. Choi, M. Chang, Y. Yum, J. Kim, and Y. Kwon, Mechanical, Electrical and Wear Properties of Cu-TiB2 Nanocomposites Fabricated by MA-SHS and SPS, J. Ceram. Process. Res., 2006, 7, p 275

    Google Scholar 

  32. J.P. Tu, N.Y. Wang, Y.Z. Yang, W.X. Qi, F. Liu, X.B. Zhang, H.M. Lu, and M.S. Liu, Preparation and Properties of TiB 2 Nanoparticle Reinforced Copper Matrix Composites by In Situ Processing, Mater. Lett., 2002, 52, p 448–452

    Article  Google Scholar 

  33. I.M. Daniel, O. Ishai, I.M. Daniel, and I. Daniel, Engineering Mechanics of Composite Materials, Oxford University Press, New York, 1994

    Google Scholar 

  34. H. Arik, Effect of Mechanical Alloying Process on Mechanical Properties of α-Si 3N 4 Reinforced Aluminum-Based Composite Materials, Mater. Des., 2008, 29, p 1856–1861

    Article  Google Scholar 

  35. C.P. Samal, J.S. Parihar, and D. Chaira, The Effect of Milling and Sintering Techniques on Mechanical Properties of Cu-Graphite Metal Matrix Composite Prepared by Powder Metallurgy Route, J. Alloys Compd., 2013, 569, p 95–101

    Article  Google Scholar 

  36. C. Padmavathi, A. Upadhyaya, and D. Agrawal, Effect of Sintering Temperature and Heating Mode on Consolidation of Al-7Zn-2· 5 Mg-1Cu Aluminum Alloy, Bull. Mater. Sci., 2012, 35, p 823–832

    Article  Google Scholar 

  37. G.T. Campbell, R. Raman, and R. Fields, Optimum press and sinter processing for Aluminum/SiC composite, in Proceedings of the First International Conference on Powder Metallurgy, Aluminum & Light Alloys for Automotive Applications (MPIF, Princeton, 1998), pp. 35–42

  38. E.A. Diler and R. Ipek, An Experimental and Statistical Study of Interaction Effects of Matrix Particle Size, Reinforcement Particle Size and Volume Fraction on the Flexural Strength of Al-SiC p Composites by P/M Using Central Composite Design, Mater. Sci. Eng. A, 2012, 548, p 43–55

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. O.P. Modi, Head, Materials Characterization division (CSIR-AMPRI Bhopal) for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Paidpilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paidpilli, M., Gupta, G.K. & Upadhyaya, A. Sintering Response of Aluminum 6061-TiB2 Composite: Effect of Prealloyed and Premixed Matrix. J. of Materi Eng and Perform 26, 4470–4480 (2017). https://doi.org/10.1007/s11665-017-2883-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2883-4

Keywords

Navigation