Skip to main content
Log in

Formation of Microcracks During Micro-Arc Oxidation in a Phytic Acid-Containing Solution on Two-Phase AZ91HP

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Micro-arc oxidation (MAO) is an effective method to produce ceramic coatings on magnesium alloys and can considerably improve their corrosion resistance. The coating properties are closely related with microcracks, which are always inevitably developed on the coating surface. In order to find out the formation and development regularity of microcracks, anodic coatings developed on two-phase AZ91HP after different anodizing times were fabricated in a solution containing environmentally friendly organic electrolyte phytic acid. The results show that anodic film is initially developed on the α phase. At 50 s, anodic coatings begin to develop on the β phase, evidencing the formation of a rough area. Due to the coating successive development, the microcracks initially appear at the boundary between the initially formed coating on the α phase and the subsequently developed coating on the β phase. With the prolonging treatment time, the microcracks near the β phase become evident. After treating for 3 min, the originally rough area on the β phase disappears and the coatings become almost uniform with microcracks randomly distributed on the sample surface. Inorganic phosphates are found in MAO coatings, suggesting that phytate salts are decomposed due to the high instantaneous temperature on the sample surface resulted from spark discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.D. Forno and M. Bestetti, Effect of the Electrolytic Solution Composition on the Performance of Micro-Arc Anodic Oxidation Films Formed on AM60B Magnesium Alloy, Surf. Coat. Technol., 2010, 205, p 1783–1788

    Article  Google Scholar 

  2. H.P. Duan, K.Q. Du, C.W. Yan, and F.H. Wang, Electrochemical Corrosion Behavior of Composite Coatings of Sealed MAO Film on Magnesium Alloy AZ91D, Electrochim. Acta, 2006, 51, p 2898–2908

    Article  Google Scholar 

  3. Z. Shi, G. Song, and A. Atrens, The Corrosion Performance of Anodised Magnesium Alloys, Corros. Sci., 2006, 48, p 3531–3546

    Article  Google Scholar 

  4. R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, and G.E. Thompson, Characterization of AC PEO Coatings on Magnesium Alloys, Surf. Coat. Technol., 2009, 203, p 2207–2220

    Article  Google Scholar 

  5. Z. Shi, G. Song, and A. Atrens, Influence of the β Phase on the Corrosion Performance of Anodised Coatings on Magnesium-aluminium Alloys, Corros. Sci., 2005, 47, p 2760–2777

    Article  Google Scholar 

  6. Y.J. Zhang and C.W. Yan, Development of Anodic Film on Mg Alloy AZ91D, Surf. Coat. Technol., 2006, 201, p 2381–2386

    Article  Google Scholar 

  7. H. Fukuda and Y. Matsumoto, Effects of Na2SiO3 on Anodization of Mg-Al-Zn Alloy in 3M KOH Solution, Corros. Sci., 2004, 46, p 2135–2142

    Article  Google Scholar 

  8. S. Mato, G. Alcala, P. Skeldon, G.E. Thompson, D. Masheder, H. Habazaki, and K. Shimizu, High Resistivity Magnesium-Rich Layers and Current Instability in Anodizing a Mg/Ta Alloy, Corros. Sci., 2003, 45, p 1779–1792

    Article  Google Scholar 

  9. H.L. Wu, Y.L. Cheng, L.L. Li, Z.H. Chen, H.M. Wang, and Z. Zhang, The Anodization of ZK60 Magnesium Alloy in Alkaline Solution Containing Silicate and the Corrosion Properties of the Anodized Films, Appl. Surf. Sci., 2007, 253, p 9387–9394

    Article  Google Scholar 

  10. F. Zhu, J.W. Wang, S.H. Li, and J. Zhang, Preparation and Characterization of Anodic Films on AZ31B Mg Alloy Formed in the Silicate Electrolytes with Ethylene Glycol Oligomers as Additives, Appl. Surf. Sci., 2012, 258, p 8985–8990

    Article  Google Scholar 

  11. E. Cakmak, K.C. Tekin, U. Malayoglu, and S. Shrestha, The Effect of Substrate Composition on the Electrochemical and Mechanical Properties of PEO Coatings on Mg Alloys, Surf. Coat. Technol., 2010, 204, p 1305–1313

    Article  Google Scholar 

  12. V. Raboy, Seeds for a Better Future: Low Phytate’ Grains Help to Overcome Malnutrition and Reduce Pollution, Trends Plant Sci., 2001, 6, p 458–462

    Article  Google Scholar 

  13. K. Dost and O. Tokul, Determination of Phytic Acid in Wheat and Wheat Products by Reverse Phase High Performance Liquid Chromatography, Anal. Chim. Acta, 2006, 558, p 22–27

    Article  Google Scholar 

  14. V. Kumar, A.K. Sinha, H.P.S. Makkar, and K. Becker, Dietary Roles of Phytate and Phytase in Human Nutrition: A Review, Food Chem., 2010, 120, p 945–959

    Article  Google Scholar 

  15. R.F. Zhang, G.Y. Xiong, and C.Y. Hu, Comparison of Coating Properties Obtained by MAO on Magnesium Alloys in Silicate and Phytic Acid Electrolytes, Curr. Appl. Phys., 2010, 10, p 255–259

    Article  Google Scholar 

  16. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corrosion Resistance of WE43 and AZ91D Magnesium Alloys with Phosphate PEO Coatings, Corros. Sci., 2008, 50, p 1744–1752

    Article  Google Scholar 

  17. O. Khaselev, D. Weiss, and J. Yahalom, Structure and Composition of Anodic Films Formed on Binary Mg-Al Alloys in KOH-aluminate Solutions Under Continuous Sparking, Corros. Sci., 2001, 43, p 1295–1307

    Article  Google Scholar 

  18. R.F. Zhang and S.F. Zhang, Formation of Micro-Arc Oxidation Coatings on AZ91HP Magnesium Alloys, Corros. Sci., 2009, 51, p 2820–2825

    Article  Google Scholar 

  19. M.F. He, L. Liu, Y.T. Wu, C. Zhong, and W.B. Hu, Influence of Microstructure on Corrosion Properties of Multilayer Mg-Al Intermetallic Compound Coating, Corros. Sci., 2011, 53, p 1312–1321

    Article  Google Scholar 

  20. S. Verdier, M. Boinet, S. Maximovitch, and F. Dalard, Formation, Structure and Composition of Anodic Films on AM60 Magnesium Alloy Obtained by DC Plasma Anodising, Corros. Sci., 2005, 47, p 1429–1444

    Article  Google Scholar 

  21. S. Hiromoto, A. Yamamoto, N. Maruyama, H. Somekawa, and T. Mukai, Influence of pH and Flow on the Polarization Behaviour of Pure Magnesium in Borate Buffer Solutions, Corros. Sci., 2008, 50, p 3561–3568

    Article  Google Scholar 

  22. S. Mato, G. Alcala, G.E. Thompson, P. Skeldon, K. Shimizu, H. Habazaki, T. Quance, M.J. Graham, and D. Masheder, Anodic Oxidation of Ta/Fe Alloys, Corros. Sci., 2003, 45, p 2881–2892

    Article  Google Scholar 

  23. X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, Effects of Topography and Composition of Titanium Surface Oxides on Osteoblast Responses, Biomaterials, 2004, 25, p 4087–4103

    Article  Google Scholar 

  24. Y.W. Song, D.Y. Shan, R.S. Chen, F. Zhang, and E.H. Han, A Novel Phosphate Conversion Film on Mg-8.8 Li Alloy, Surf. Coat. Technol., 2009, 203, p 1107–1113

    Article  Google Scholar 

  25. NIST, X-ray Photoelectron Spectroscopy Database. http://srdatanist.gov/xps/

  26. Z.Z. Qu, R. Wang, Y.S. Zhang, Y.F. Qu, and X.H. Wu, Study of Coating Growth Behavior During the Plasma Electrolytic Oxidation of Magnesium Alloy ZK60, J. Mater. Eng. Perform., 2015, 24, p 1483–1491

    Article  Google Scholar 

  27. H. Ardelean, I. Frateur, S. Zanna, A. Atrens, and P. Marcus, Corrosion Protection of AZ91 Magnesium Alloy by Anodizing in Niobium and Zirconium-Containing Electrolytes, Corros. Sci., 2009, 51, p 3030–3038

    Article  Google Scholar 

  28. H.Y. Hsiao, P. Chung, and W.T. Tsai, Baking Treatment Effect on Materials Characteristics and Electrochemical Behavior of Anodic Film Formed on AZ91D Magnesium Alloy, Corros. Sci., 2007, 49, p 781–793

    Article  Google Scholar 

  29. J. Torres, S. Domínguez, M.F. Cerdá, G. Obal, A. Mederos, R.F. Irvine, A. Díaz, and C. Kremer, Solution Behaviour of Myo-Inositol Hexakisphosphate in the Presence of Multivalent Cations: Prediction of a Neutral Pentamagnesium Species Under Cytosolic/Nuclear Conditions, J. Inorg. Biochem., 2005, 99, p 828–840

    Article  Google Scholar 

  30. F.S. Pan, X. Yang, and D.F. Zhang, Chemical Nature of Phytic Acid Conversion Coating on AZ61 Magnesium Alloy, Appl. Surf. Sci., 2009, 255, p 8363–8371

    Article  Google Scholar 

  31. T. Notoya, V. Otieno-Alego, and D.P. Schweinsberg, The Corrosion and Polarization Behaviour of Copper in Domestic Water in the Presence of Ca, Mg and Na-Salts of Phytic Acid, Corros. Sci., 1995, 37, p 55–65

    Article  Google Scholar 

  32. R.Y. Zhang, S. Cai, G.H. Xu, H. Zhao, Y. Li, X.X. Wang, K. Kuang, M.G. Ren, and X.D. Wu, Crack Self-healing of Phytic Acid Conversion Coating on AZ31 Magnesium Alloy by Heat Treatment and the Corrosion Resistance, Appl. Surf. Sci., 2014, 313, p 896–904

    Article  Google Scholar 

  33. W.B. Xue, Z.W. Deng, R.Y. Chen, and T.H. Zhang, Growth Regularity of Ceramic Coatings Formed by Microarc Oxidation on Al-Cu-Mg alloy, Thin Solid Films, 2000, 372, p 114–117

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the supports of the National Natural Science Foundation of China (Nos. 51061007 and 51361011), the Natural Science Foundation of Jiangxi Province, China (No. 20132BAB206011), and the Project of Jiangxi Science and Technology Normal University (2013ZDPY JD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R.F., Chang, W.H., Jiang, L.F. et al. Formation of Microcracks During Micro-Arc Oxidation in a Phytic Acid-Containing Solution on Two-Phase AZ91HP. J. of Materi Eng and Perform 25, 1304–1316 (2016). https://doi.org/10.1007/s11665-016-1976-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1976-9

Keywords

Navigation