Skip to main content

Advertisement

Log in

Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.U. Rahman, L. Pompa, and W. Haider, Influence of Electropolishing and Magnetoelectropolishing on Corrosion and Biocompatibility of Titanium Implants, J. Mater. Eng. Perform., 2014, 23, p 3907–3915

    Article  Google Scholar 

  2. M. Geetha, A. Singh, R. Asokamani, and A. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54(3), p 397–425

    Article  Google Scholar 

  3. Y.-H. Jeong, E.-J. Kim, W.A. Brantley, and H.-C. Chope, Morphology of Hydroxyapatite Nanoparticles in Coatings on Nanotube-Formed Ti-Nb-Zr Alloys for Dental Implants, Vacuum, 2014, 107, p 297–303

    Article  Google Scholar 

  4. J.M. Calderon-Morenoa, C. Vasilescua, S.I. Droba, S. Ivanescub, P. Osiceanu, P. Drob, M. Popa, S. Preda, and E. Vasilescua, Microstructural and Mechanical Properties, Surface and Electrochemical Characterisation of a New Ti-Zr-Nb Alloy for Implant Applications, J. Alloy. Comp., 2014, 612, p 398–410

    Article  Google Scholar 

  5. M.A. Baker, S.L. Assis, O.Z. Higa, and I. Costa, Nanocomposite Hydroxyapatite Formation on a Ti-13Nb-13Zr Alloy Exposed in a MEM Cell Culture Medium and the Effect of H2O2 Addition, Acta Biomater., 2009, 5(1), p 63–75

    Article  Google Scholar 

  6. P. Jain, T. Mandal, P. Prakash, A. Garg, and K. Balani, Electrophoretic Deposition of Nanocrystalline Hydroxyapatite on Ti6Al4 V/TiO2 Substrate, J. Coat. Technol. Res., 2013, 10(2), p 263–275

    Article  Google Scholar 

  7. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng., R, 2004, 47(3-4), p 49–121

    Article  Google Scholar 

  8. C. Vasilescu, M. Popa, S.I. Drob, P. Osiceanu, M. Anastasescu, and J.M.C. Moreno, Deposition and Characterization of Bioactive Ceramic Hydroxyapatite Coating on Surface of Ti-15Zr-5Nb Alloy, Ceram. Int., 2014, 40(9), p 14973–14982

    Article  Google Scholar 

  9. P. Rajesh, N. Mohan, Y. Yokogawa, and H. Varma, Pulsed Laser Deposition of Hydroxyapatite on Nanostructured Titanium Towards Drug Eluting Implants, Mater. Sci. Eng., C, 2013, 33(5), p 2899–2904

    Article  Google Scholar 

  10. M. Assadian, H. Jafari, and S.M. Ghaffari, Shahri, M.H. Idris and G. Gholampour. Corrosion Resistance of EPD Nanohydroxyapatite Coated 316L Stainless Steel, Surf. Eng., 2014, 30(11), p 806–813

    Article  Google Scholar 

  11. Q. Bao, K. Zhao, and J. Liu, Characterization of Wollastonite Coatings Prepared by Sol-Gel on Ti Substrate, J. Coat. Technol. Res., 2012, 9(2), p 189–193

    Article  Google Scholar 

  12. M.J. Yaszemski, Biomaterials in Orthopedics, CRC Press, Boca Raton, 2003

    Book  Google Scholar 

  13. H. Kheimehsari, S. Izman, and M.R. Shirdar, Effects of HA-Coating on the Surface Morphology and Corrosion Behavior of a Co-Cr-Based Implant in Different Conditions, J. Mater. Eng. Perform., 2015, 24, p 2264–2302

    Article  Google Scholar 

  14. H. Zhou and J. Lee, Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering, Acta Biomater., 2011, 7(7), p 2769–2781

    Article  Google Scholar 

  15. C.J. Tredwin, A.M. Young, G. Georgiou, S.H. Shin, H.W. Kim, and J.C. Knowles, Hydroxyapatite, Fluor-Hydroxyapatite and Fluorapatite Produced Via the Sol-Gel Method. Optimisation, Characterisation and Rheology, Dent. Mater., 2013, 29(2), p 166–173

    Article  Google Scholar 

  16. R.Z. Legeros, Biodegradation and Bioresorption of Calcium Phosphate Ceramics, Clin. Mater., 1993, 14(1), p 65–88

    Article  Google Scholar 

  17. S.I. Stupp and G.W. Ciegler, Organoapatites: Materials for Artificial Bone. I. Synthesis and Microstructure, J. Biomed. Mater. Res., 1992, 26(2), p 169–183

    Article  Google Scholar 

  18. T. Sridhar, U.K. Mudali, and M. Subbaiyan, Sintering Atmosphere and Temperature Effects on Hydroxyapatite Coated Type 316L Stainless Steel, Corros. Sci., 2003, 45(10), p 2337–2359

    Article  Google Scholar 

  19. S.G. Mohamed, A.A. Abdeltawab, and M.H. Shoeib, Corrosion Behaviour and Bioactivity of Electrophoretically Deposited Hydroxyapatite on Titanium in Physiological Media (Hanks’ Solution), Mater. Sci. Poland., 2012, 30(3), p 231–239

    Article  Google Scholar 

  20. H.W. Kim, H.E. Kim, V. Salih, and J.C. Knowles, Sol-Gel-Modified Titanium with Hydroxyapatite Thin Films and Effect on Osteoblast-Like Cell Responses, J. Biomed. Mater. Res., Part A, 2005, 74(3), p 294–305

    Article  Google Scholar 

  21. J.A. Toque, M. Herliansyah, M. Hamdi, A. Ide-Ektessabi, and I. Sopyan, Adhesion Failure Behavior of Sputtered Calcium Phosphate Thin Film Coatings Evaluated Using Microscratch Testing, J. Mech. Behav. Biomed., 2012, 3(4), p 324–330

    Article  Google Scholar 

  22. L. Mohan, D. Durgalakshmi, M. Geetha, T.S.N. Sankara Narayanan, and R. Asokamani, Electrophoretic Deposition of Nanocomposite (HAp + TiO2) on Ttitanium Alloy for Biomedical Applications, Ceram. Int., 2012, 38(4), p 3435–3443

    Article  Google Scholar 

  23. A. Mechay, H.E.L. Feki, F. Schoenstein, and N. Jouini, Nanocrystalline Hydroxyapatite Ceramics Prepared by Hydrolysis in Polyol Medium, Chem. Phys. Lett., 2012, 541(10), p 75–80

    Article  Google Scholar 

  24. D. Almasi, M. Kadir, S. Izman, M. Assadian, and M. Ghanbari, Crystalline HA Coating on Peek via Chemical Deposition, Appl. Surf. Sci., 2014, 314, p 1034–1040

    Article  Google Scholar 

  25. H. Miyazaki, I. Ushiroda, C. Itomura, T. Hirashita, N. Adachi, and T. Ota, Thermal Expansion of Hydroxyapatite Between −100 °C and 50 °C, Mater. Sci. Eng., C, 2009, 29(4), p 1463–1466

    Article  Google Scholar 

  26. O. Albayrak and S. Altintas, Production of “Tricalcium Phosphate/Titanium Dioxide” Coating Surface on Titanium Substrates, J. Mater. Sci. Technol., 2010, 26(11), p 1006–1010

    Article  Google Scholar 

  27. W. Kim, Q. Zhang, and F. Saito, Mechanochemical Synthesis of Hydroxyapatite From Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 Mixtures, J. Mater. Sci., 2000, 35(21), p 5401–5405

    Article  Google Scholar 

  28. M.A. Hassan, A.R. Bushroa, and Reza Mahmoodian, Identification of Critical Load for Scratch Adhesion Strength of Nitride-Based Thin Films Using Wavelet Analysis and a Proposed Analytical Model, Surf. Coat. Technol., 2015, 277, p 216–221

    Article  Google Scholar 

  29. J.A. Toque, M.K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, and I. Sopyan, Adhesion Failure Behavior of Sputtered Calcium Phosphate Thin Film Coatings Evaluated Using Microscratch Testing, J. Mech. Behav. Biomed., 2010, 3, p p324–p330

    Article  Google Scholar 

  30. E. Mohseni, E. Zalnezhad, and A.R. Bushroa, Comparative Investigation on the Adhesion of Hydroxyapatite Coating on Ti-6Al-4V Implant: A Review Paper, Int. J. Adhesion. Adhes., 2014, 48, p 238–257

    Article  Google Scholar 

  31. X. Fan, J. Chen, J.P. Zou, Q. Wan, Z.C. Zhou, and J.M. Ruan, Bone-Like Apatite Formation on HA/316L Stainless Steel Composite Surface in Simulated Body Fluid, Trans. Nonferr. Metal. Soc., 2009, 19(2), p 347–352

    Article  Google Scholar 

  32. S. Zhang, Y. Wang, X. Zeng, K. Khor, W. Weng, and D. Sun, Evaluation of Adhesion Strength and Toughness of Fluoridated Hydroxyapatite Coatings, Thin Solid Film., 2008, 516(16), p 5162–5167

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Higher Education of Malaysia for the financial support (Vote number 04H18), faculty of mechanical engineering of the Universiti Teknologi Malaysia for providing research facilities, and Shahid Rajaee Teacher Training University for the voluble assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, H., Hessam, H., Shahri, S.M.G. et al. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy. J. of Materi Eng and Perform 25, 901–909 (2016). https://doi.org/10.1007/s11665-016-1944-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1944-4

Keywords

Navigation