Skip to main content
Log in

A Review of Graphene Nanoribbon Field-Effect Transistor Structures

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ascending trend of Moore’s law has stretched to the horizon, where the prospects of carbon-based materials show the potential of replacing the silicon-based complementary metal-oxide semiconductor technology. These alternatives include nanowire transistors, carbon nanotube field-effect transistors, quantum-dot cellular automata, and graphene nanoribbon field-effect transistors (GNRFETs). This paper presents a review of the evolution of graphene, its fabrication process, and graphene-based field-effect transistor device structures. The diverse features of graphene as a material are derived from its structural, electronic, and thermal properties. A brief review of the techniques utilized for the fabrication of GNRFETs is mentioned in this paper. GNRFETs are based on excellent electrical properties that include strong ballistic transport, high current ratio, better compatibility with high K dielectrics, high electron mobility, reliability, scalability, and transconductance. GNRFET structures are reviewed for several aspects which include the Ion/Ioff ratio, subthreshold swing, oxide thickness, high K dielectrics, etc. that help to monitor the improvement in the performance of GNRFET devices. A comparison of the structures is presented to help researchers have a fair idea of the impact of modifications on device performance. The compact model used to simulate GNRFET-based devices is also included in this paper. GNRFET-based devices have several applications to offer in the current scenario. This paper also reports several applications of present GNRFET-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Wu, Y.-L. Shen, K. Reinhardt, H. Szu, and B. Dong, Applied Computational Intelligence and Soft Computing 2013, (2013).

    Article  Google Scholar 

  2. Y. Chen, A. Sangai, M. Gholipour and D. Chen, In International Symposium on Low Power Electronics and Design (ISLPED), (2013), pp 151-156.

  3. S. Tyagi, In 2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits, (2007), pp 10-15.

  4. P.J. Wright and K.C. Saraswat, IEEE Trans. Electron Devices 37, 1884–1892 (1990).

    Article  Google Scholar 

  5. S. Ogura, P.J. Tsang, W.W. Walker, D.L. Critchlow, and J.F. Shepard, IEEE J. Solid-State Circuits 15, 424–432 (1980).

    Article  Google Scholar 

  6. S.A. Parke, J.E. Moon, H.C. Wann, P.K. Ko, and C. Hu, IEEE Trans. Electron Devices 39, 1694–1703 (1992).

    Article  Google Scholar 

  7. S.G. Chamberlain and S. Ramanan, IEEE Trans. Electron Devices 33, 1745–1753 (1986).

    Article  Google Scholar 

  8. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur and W Hon-Sum Philip, Proceedings of the IEEE 2001, vol. 89, pp. 259-288.

  9. R. Schaller, In PICMET ‘01. Portland International Conference on Management of Engineering and Technology. Proceedings Vol.1: Book of Summaries (IEEE Cat. No.01CH37199), (2001), p 195 vol.1.

  10. M. Krüger, M.R. Buitelaar, T. Nussbaumer, C. Schönenberger, and L. Forró, Appl. Phys. Lett. 78, 1291–1293 (2001).

    Article  Google Scholar 

  11. F. Chen, J. Xia, D.K. Ferry, and N. Tao, Nano Lett. 9, 2571–2574 (2009).

    Article  CAS  Google Scholar 

  12. I. Meric, Y. Melinda Han, F. Andrea Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 3, 654–659 (2008).

    Article  CAS  Google Scholar 

  13. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, and B. Hillebrands, J. Magn. Magn. Mater. 509, (2020).

    Article  CAS  Google Scholar 

  14. K. Walus, T.J. Dysart, G.A. Jullien, and R.A. Budiman, IEEE Trans. Nanotechnol. 3, 26–31 (2004).

    Article  Google Scholar 

  15. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, (2008).

    Article  Google Scholar 

  16. Y. Ouyang, H. Dai, and J. Guo, Nano Research 3, 8–15 (2010).

    Article  CAS  Google Scholar 

  17. A. Naeemi and J.D. Meindl, IEEE Electron Device Lett. 29, 497–499 (2008).

    Article  CAS  Google Scholar 

  18. M.R. Choudhury, Y. Yoon, J. Guo, and K. Mohanram, IEEE Trans. Nanotechnol. 10, 727–736 (2011).

    Article  Google Scholar 

  19. P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 605–615 (2007).

    Article  CAS  Google Scholar 

  20. K. Jiahao, C. Wei, and X. Xuejun, S Deblina, L Wei (B Kaustav: In Proc.SPIE, 2014).

    Google Scholar 

  21. Z. Liu, A.A. Bol, and W. Haensch, Nano Lett. 11, 523–528 (2011).

    Article  CAS  Google Scholar 

  22. Z. Kordrostami, M.H. Sheikhi, and A. Zarifkar, IEEE Trans. Nanotechnol. 11, 526–533 (2012).

    Article  Google Scholar 

  23. SS Dae, L Sung-Young, K Sung-Min, Y Eun-Jung, K Min-Sang, L Ming, OC Woo, YK Hwan, KS Hwan, S Dong-Suk, L Kwan-Heum, P Heung Sik, HJ Nam, CJ Park, J-B Park, K Dong-Won, P Donggun, R Byung-Il, In IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., (2005), pp 717-720.

  24. D. Berman, NB Zhitenev, RC, Ashoori, HI Smith and MR Melloch, J. Vacuum Sci. Technol B, 15, 2844–2847 (1997).

    Article  CAS  Google Scholar 

  25. I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent, and G.L. Snider, Science 284, 289 (1999).

    Article  CAS  Google Scholar 

  26. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C.M. Lieber, Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  27. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, and C.M. Lieber, Nano Lett. 3, 149–152 (2003).

    Article  CAS  Google Scholar 

  28. M.J. Kumar, M.A. Reed, G.A.J. Amaratunga, G.M. Cohen, D.B. Janes, C.M. Lieber, M. Meyyappan, L. Wernersson, K.L. Wang, R.S. Chau, T.I. Kamins, M. Lundstrom, B. Yu, and C. Zhou, IEEE Trans. Nanotechnol. 7, 643–650 (2008).

    Article  Google Scholar 

  29. R. Ahmad, T. Mahmoudi, M.-S. Ahn, and Y.-B. Hahn, Biosens. Bioelectron. 100, 312–325 (2018).

    Article  CAS  Google Scholar 

  30. B.-R. Li and C.-C. Chen, U Rajesh Kumar, Y-T Chen. Analyst 139, 1589–1608 (2014).

    Article  CAS  Google Scholar 

  31. T Dang, L Anghel, R Leveugle, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006. 2006, pp. 28-33.

  32. J.F. Peter Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century (Cambridge: Cambridge University Press, 1999).

    Book  Google Scholar 

  33. H. Liu, D. Nishide, T. Tanaka, and H. Kataura, Nature Communications 2, 309 (2011).

    Article  Google Scholar 

  34. F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein, Microelectron. Eng. 64, 399–408 (2002).

    Article  CAS  Google Scholar 

  35. M.A. Akhukov, A. Fasolino, Y.N. Gornostyrev, and M.I. Katsnelson, Phys. Rev. B 85, (2012).

    Article  Google Scholar 

  36. A. Javey, J. Guo, D.B. Farmer, Q. Wang, D. Wang, R.G. Gordon, M. Lundstrom, and H. Dai, Nano Lett. 4, 447–450 (2004).

    Article  CAS  Google Scholar 

  37. A. Naderi and S.A. Ahmadmiri, ECS J. Solid State Sci. Technol. 5, M63–M68 (2016).

    Article  CAS  Google Scholar 

  38. Shawn-Yu, Bur James A, Yang Z-P, Ci L, Ajayan PM, (Rensselaer Polytechnic Institute: United States, 2009).

  39. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447–2449 (1998).

    Article  CAS  Google Scholar 

  40. M Spasova, G. Angelov, M. Hristov, R. Radonov and R. Rusev, (2013).

  41. M. Najari, S. Frégonèse, C. Maneux, H. Mnif, N. Masmoudi, and T. Zimmer, IEEE Trans. Electron Devices 58, 195–205 (2011).

    Article  CAS  Google Scholar 

  42. R. Farazkish, S. Sayedsalehi, and K. Navi, J. Nanotechnol. 2012, (2012).

    Google Scholar 

  43. M.S. Sefidi, D. Abedi, and M. Moradian, J. Softw. Eng. Appl 06, 9 (2013).

    Article  Google Scholar 

  44. S. Craig Lent, B Isaksen, M Lieberman, J. Am. Chem. Soc. 125, 1056–1063 (2003).

    Google Scholar 

  45. K. Das, Debashis DE. Int. J. Nanosci. 09, 201–214 (2010).

    Article  CAS  Google Scholar 

  46. K. Navi, V. Foroutan, M. Rahimi Azghadi, M. Maeen, M. Ebrahimpour, M. Kaveh, and O. Kavehei, Microelectron. J. 40, 1441–1448 (2009).

    Article  CAS  Google Scholar 

  47. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, and P.M. Ajayan, Nano Lett. 12, 844–849 (2012).

    Article  CAS  Google Scholar 

  48. J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48, 3686–3699 (2012).

    Article  CAS  Google Scholar 

  49. Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, and P. Chen, Adv. Mater. 31, 1808283 (2019).

    Article  Google Scholar 

  50. J. Tim Booth, P. Blake, R.R. Nair, D. Jiang, E.W. Hill, U. Bangert, A. Bleloch, M. Gass, K.S. Novoselov, M.I. Katsnelson, and A.K. Geim, Nano Lett. 8, 2442–2446 (2008).

    Article  Google Scholar 

  51. H. Xu, S. Wang, Z. Zhang, Z. Wang, H. Xu, and L.-M. Peng, Appl. Phys. Lett. 100, (2012).

    Article  Google Scholar 

  52. H. Rezgui, F. Nasri, M.F. Ben Aissa, H. Belmabrouk, and A.A. Guizani, IEEE Trans. Electron Devices 65, 1611–1616 (2018).

    Article  CAS  Google Scholar 

  53. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  54. M. Patnala, T. Ytterdal and M. Rizkalla, In 2019 IEEE National Aerospace and Electronics Conference (NAECON), (2019), pp 451-457.

  55. S. Das and J. Appenzeller, In 2011 IEEE Radio Frequency Integrated Circuits Symposium, (2011), pp 1-4.

  56. F. Rabieefar and D. Dideban, ECS J. Solid State Sci. Technol. 8, M30–M37 (2019).

    Article  CAS  Google Scholar 

  57. X. Lu, M. Yu, and H Huang, RS Ruoff, Nanotechnology 10, 269–272 (1999).

    Article  CAS  Google Scholar 

  58. B. Jayasena and S. Subbiah, Nanoscale Res. Lett. 6, 95 (2011).

    Article  Google Scholar 

  59. V. Eduardo Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias, K.S. Novoselov, A.K. Geim, and F. Guinea, Phys. Rev. Lett. 105, (2010).

    Article  Google Scholar 

  60. O.C. Compton and S.T. Nguyen, Small 6, 711–723 (2010).

    Article  CAS  Google Scholar 

  61. Y. Si and E.T. Samulski, Nano Lett. 8, 1679–1682 (2008).

    Article  CAS  Google Scholar 

  62. X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H.J. Räder, and K. Müllen, J. Am. Chem. Soc. 130, 4216–4217 (2008).

    Article  CAS  Google Scholar 

  63. X. Yan, X. Cui, and L.-S. Li, J. Am. Chem. Soc. 132, 5944–5945 (2010).

    Article  CAS  Google Scholar 

  64. X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, and M.S. Dresselhaus, Nanoscale 3, 86–95 (2011).

    Article  CAS  Google Scholar 

  65. W. Xu and T.-W. Lee, Mater. Horizons 3, 186–207 (2016).

    Article  CAS  Google Scholar 

  66. Y.-W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, (2006).

    Article  Google Scholar 

  67. K.K. Jha, N. Tyagi, N.K. Jaiswal, and P. Srivastava, Phys. Lett. A 383, (2019).

    Article  CAS  Google Scholar 

  68. S. Marchini, S. Günther, and J. Wintterlin, Phys. Rev. B 76, (2007).

    Article  Google Scholar 

  69. H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, and J. Chen, Phys. Rev. B 75, (2007).

    Article  Google Scholar 

  70. S.I. Kundalwal, S.A. Meguid, and G.J. Weng, Carbon 117, 462–472 (2017).

    Article  CAS  Google Scholar 

  71. E.-J. Kan, Z. Li, J. Yang, and J.G. Hou, J. Am. Chem. Soc. 130, 4224–4225 (2008).

    Article  CAS  Google Scholar 

  72. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60–63 (2007).

    Article  CAS  Google Scholar 

  73. Z Zhen, H Zhu, In Graphene, ed. Hongwei Zhu, Xu Zhiping, Xie Dan and Fang Ying (Academic Press: 2018), pp 1-12.

  74. R. Zan, U. Bangert, Q. Ramasse, and K.S. Novoselov, J. Phys. Chem. Lett. 3, 953–958 (2012).

    Article  CAS  Google Scholar 

  75. J. Nilsson, A.H. Castro Neto, F. Guinea, and N.M.R. Peres, Phys. Rev. Lett. 97, (2006).

    Article  Google Scholar 

  76. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  77. M. Khan and F. Shahil, AA Balandin. Solid State Commun. 152, 1331–1340 (2012).

    Google Scholar 

  78. S. Thornhill, N. Wu, Z. F. Wang, Q. W. Shi and J. Chen, In 2008 IEEE International Symposium on Circuits and Systems, (2008), pp 169-172.

  79. P.J. Wessely, F. Wessely, E. Birinci, U. Schwalke, and B. Riedinger, J. Vac. Sci. Technol. B 30, 03D114 (2012).

    Article  Google Scholar 

  80. S. Choudhary and V. Singh, Bull. Mater. Sci. 39, 1303–1309 (2016).

    Article  CAS  Google Scholar 

  81. M. Gholipour, Y. Chen, A. Sangai, N. Masoumi, and D. Chen, IEEE Trans. Very Large Scale Integr. Syst. 24, 650–663 (2016).

    Article  Google Scholar 

  82. Y. Chen, A. Sangai, A. Rogachev, M. Gholipour, G. Iannaccone, G. Fiori, and D. Chen, IEEE Trans. Nanotechnol. 14, 1068–1082 (2015).

    Article  CAS  Google Scholar 

  83. M. Saremi, M. Saremi, H. Niazi, and A.Y. Goharrizi, Superlattices Microstruct. 60, 67–72 (2013).

    Article  CAS  Google Scholar 

  84. H. Sarvari and R. Ghayour, Int. J. Electron. 99, 673–682 (2012).

    Article  CAS  Google Scholar 

  85. M. Gholipour, Y. Chen, A. Sangai and D. Chen, In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), (2014), pp 1-6.

  86. M. Gholipour, N. Masoumi, Y.C. Chen, D. Chen, and M. Pourfath, IEEE Trans. Electron Devices 61, 4000–4006 (2014).

    Article  CAS  Google Scholar 

  87. A. Naderi and P. Keshavarzi, Superlattices Microstruct. 72, 305–318 (2014).

    Article  CAS  Google Scholar 

  88. Ali Naderi, Mater. Sci. Semicond. Process. 31, 223–228 (2015).

    Article  CAS  Google Scholar 

  89. M.A. Eshkalak, R. Faez, and S. Haji-Nasiri, Physica E 66, 133–139 (2015).

    Article  Google Scholar 

  90. M. Akbari Eshkalak and M.K. Anvarifard, Phys. Lett. A 381, 1379–1385 (2017).

    Article  CAS  Google Scholar 

  91. Y. Chen, A. Rogachev, A. Sangai, G. Iannaccone, G. Fiori and D. Chen, In 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), (2013), pp 1789-1794

  92. N. D. Akhavan, G. Jolley, G. U. Membreno, J. Antoszewski and L. Faraone, In COMMAD 2012, (2012), pp 67-68.

  93. J. Lee, T.-J. Ha, H. Li, K.N. Parrish, M. Holt, A. Dodabalapur, R.S. Ruoff, and D. Akinwande, ACS Nano 7, 7744–7750 (2013).

    Article  CAS  Google Scholar 

  94. K. Parrish and D. Akinwande, Appl. Phys. Lett. 98, (2011).

    Article  Google Scholar 

  95. P. Sharma, I. Kaur, S. Gupta, and S. Singh, AIP Conf. Proc. 1724, (2016).

    Article  Google Scholar 

  96. H.C. Chin, C.S. Lim, W.S. Wong, K.A. Danapalasingam, V.K. Arora, and M.L.P. Tan, J. Nanomater. 2014, (2014).

    Google Scholar 

  97. K. Tamersit, J. Comput. Electron. 18, 1214–1221 (2019).

    Article  CAS  Google Scholar 

  98. M. Sanaeepur, A.Y. Goharrizi, and M.J. Sharifi, IEEE Trans. Electron Devices 61, 1193–1198 (2014).

    Article  CAS  Google Scholar 

  99. H. Sarvari, R. Ghayour, and E. Dastjerdy, Physica E 43, 1509–1513 (2011).

    Article  CAS  Google Scholar 

  100. H. Happy, N. Meng, R. Fleurier, E. Pichonat, D. Vignaud and G. Dambrine, In 2011 41st European Microwave Conference, (2011), pp 1138-1141.

  101. M.H. Tajarrod and H.R. Saghai, Beilstein J. Nanotechnol. 6, 2062–2068 (2015).

    Article  CAS  Google Scholar 

  102. S. Fregonese, C. Maneux and T. Zimmer, In 2009 International Semiconductor Device Research Symposium, (2009), pp 1-2.

  103. M.R. Moslemi, M.H. Sheikhi, K. Saghafi, and M.K. Moravvej-Farshi, Microelectron. Reliab. 52, 2579–2584 (2012).

    Article  CAS  Google Scholar 

  104. K. Tamersit and F. Djeffal, IEEE Sens. J. 16, 4180–4191 (2016).

    Article  Google Scholar 

  105. J. Moon, D. K. Gaskill, P. Campbell and P. Asbeck, In 2011 IEEE MTT-S International Microwave Symposium, (2011), pp 1-4.

  106. JA Goundar, T Kudo, Q Zhang, K Suzuki, H Miura, In ASME 2019 International Mechanical Engineering Congress and Exposition, (2019).

  107. C. Sire, F. Ardiaca, S. Lepilliet, J.-W.T. Seo, M.C. Hersam, G. Dambrine, H. Happy, and V. Derycke, Nano Lett. 12, 1184–1188 (2012).

    Article  CAS  Google Scholar 

  108. M. R. Stan, D. Unluer, A. Ghosh and F. Tseng, In 2009 IEEE International Symposium on Circuits and Systems, (2009), pp 69-72.

Download references

Funding

The study received no funding from any public, commercial or non-profit organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Bhardwaj.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, S., Bhardwaj, A., Pandit, A.K. et al. A Review of Graphene Nanoribbon Field-Effect Transistor Structures. J. Electron. Mater. 50, 3169–3186 (2021). https://doi.org/10.1007/s11664-021-08859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08859-y

Keywords

Navigation