Skip to main content
Log in

Linearity Performance and Distortion Analysis of Carbon Nanotube Tunneling FET

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this research work, we have varied several parameters of a carbon nanotube based tunneling field effect transistor (CNT-TFET) such as the dielectric constant of the gate insulator (κ), channel length, oxide thickness, doping level, and the nature of doping to investigate how the performance of the CNT-TFET is affected. The performance analysis has been done based on the following performance criteria: Subthreshold swing (SS), threshold voltage (VT), and on-current to off-current ratio (Ion/Ioff). In addition, we have also analyzed how linearity and distortion figures of merit such as second-order voltage intercept point (VIP2), third-order voltage intercept point (VIP3), third-order input intercept point (IIP3), and third-order intermodulation distortion (IMD3) are affected by parametric variation. By observing the impact of parametric variation on this large number of performance metrics, a compromise choice of structural parameters is possible depending on the application. Moreover, we have proposed an asymmetric doping design that suppresses the highly undesirable ambipolar behavior in CNT-TFET. In a real-space approach, the simulation study has been carried out using the elegant non-equilibrium Green’s function (NEGF) formalism considering tight-binding Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Crupi, D.M.P. Schreurs, J.P. Raskin, and A. Caddemi, Solid. State. Electron. 80, 81 (2013).

    Article  CAS  Google Scholar 

  2. A. Chaudhry and M.J. Kumar, IEEE Trans. Device Mater. Reliab. 4, 99 (2004).

    Article  Google Scholar 

  3. M. Akram and B. Ghosh, J. Semicond. 35, 074001 (2014).

    Article  CAS  Google Scholar 

  4. D. Kato, Y. Kajiwara, A. Mukai, H. Ono, A. Shindome, J. Tajima, T. Hikosaka, M. Kuraguchi, and S. Nunoue, Jpn. J. Appl. Phys. 59, SGGD13 (2020).

    Article  CAS  Google Scholar 

  5. D. Madadi and A.A. Orouji, ECS J. Solid State Sci. Technol. 9, 045002 (2020).

    Article  CAS  Google Scholar 

  6. A. Pal and A. Sarkar, Eng. Sci. Technol. an Int. J. 17, 205 (2014).

    Article  Google Scholar 

  7. Y. Khatami and K. Banerjee, IEEE Trans. Electron Devices 56, 2752 (2009).

    Article  CAS  Google Scholar 

  8. S. Gupta, K. Nigam, S. Pandey, D. Sharma, and P.N. Kondekar, IEEE Trans. Electron Devices 64, 4731 (2017).

    Article  CAS  Google Scholar 

  9. A.C. Seabaugh and Q. Zhang, Proc. IEEE 98, 2095 (2010).

    Article  CAS  Google Scholar 

  10. S. Shirazi, G. Karimi, and S. Mirzakuchaki, IEEE Trans. Electron Devices 66, 2822 (2019).

    Article  CAS  Google Scholar 

  11. S.M. Boby, R. Islam, in 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT) (IEEE, 2018), pp. 449–453.

  12. N. Balamurugan, G.L. Priya, S. Manikandan, G. Srimathi, in 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID) (IEEE, 2016), pp. 294–299.

  13. A.M. Hammam, M.E. Schmidt, M. Muruganathan, S. Suzuki, and H. Mizuta, Carbon 126, 588 (2018).

    Article  CAS  Google Scholar 

  14. J.K. Mamidala, R. Vishnoi, and P. Pandey, Tunnel Field-Effect Transistors (TFET) (London: Wiley, 2016).

    Book  Google Scholar 

  15. S. Ahmad, N. Alam, and M. Hasan, AEU-Int. J. Electron. Commun. 89, 70 (2018).

    Article  Google Scholar 

  16. J.H. Kim, S. Kim, and B.G. Park, IEEE Trans. Electron Devices 66, 1656 (2019).

    Article  CAS  Google Scholar 

  17. W. Wang, Y. Sun, H. Wang, H. Xu, M. Xu, S. Jiang, and G. Yue, Semicond. Sci. Technol. 31, 035002 (2016).

    Article  CAS  Google Scholar 

  18. P. Avouris, Z. Chen, V. Perebeinos, in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 174–184.

  19. S.J. Tans, A.R. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    Article  CAS  Google Scholar 

  20. R. Martel, T. Schmidt, H. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).

    Article  CAS  Google Scholar 

  21. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. Magnuson, S. McDonnell, L. Colombo, E. Vogel, R. Ruoff, and R. Wallace, Appl. Phys. Lett. 99, 122108 (2011).

    Article  CAS  Google Scholar 

  22. S. Kumar, N. Peltekis, K. Lee, H.Y. Kim, and G.S. Duesberg, Nanoscale Res. Lett. 6, 390 (2011).

    Article  CAS  Google Scholar 

  23. Q. Cao, S. Han, G.S. Tulevski, Y. Zhu, D.D. Lu, and W. Haensch, Nat. Nanotechnol. 8, 180 (2013).

    Article  CAS  Google Scholar 

  24. X. Qin, F. Peng, F. Yang, X. He, H. Huang, D. Luo, J. Yang, S. Wang, H. Liu, L. Peng, and Y. Li, Nano Lett. 14, 512 (2014).

    Article  CAS  Google Scholar 

  25. G.S. Tulevski, A.D. Franklin, D. Frank, J.M. Lobez, Q. Cao, H. Park, A. Afzali, S.J. Han, J.B. Hannon, and W. Haensch, ACS Nano 8, 8730 (2014).

    Article  CAS  Google Scholar 

  26. S. Bala and M. Khosla, J. Semicond. 39, 044001 (2018).

    Article  CAS  Google Scholar 

  27. S.O. Koswatta, D.E. Nikonov, M.S. Lundstrom, in IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. (IEEE, 2005), pp. 518–521.

  28. S.O. Koswatta, S.J. Koester, W. Haensch, in 2009 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2009), pp. 1–4.

  29. K. Tamersit, IEEE Trans. Electron Devices 67, 704 (2020).

    Article  CAS  Google Scholar 

  30. S.K. Sinha, S. Chaudhury, in 2012 National Conference on Computing and Communication Systems (IEEE, 2012), pp. 1–5.

  31. Z. Xiao, J. Elike, A. Reynolds, R. Moten, and X. Zhao, Microelectron. Eng. 164, 123 (2016).

    Article  CAS  Google Scholar 

  32. A.J. Mackus, N.F. Thissen, J.J. Mulders, P.H. Trompenaars, Z. Chen, W.M. Kessels, and A.A. Bol, Appl. Phys. Lett. 110, 013101 (2017).

    Article  CAS  Google Scholar 

  33. A.D. Franklin, M. Luisier, S.J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, and W. Haensch, Nano Lett. 12, 758 (2012).

    Article  CAS  Google Scholar 

  34. S. Maas, in 2017 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2017), pp. 87–90.

  35. Nano tcad vides. http://vides.nanotcad.com.

  36. G. Fiori, G. Iannaccone, and G. Klimeck, IEEE Trans. Electron Devices 53, 1782 (2006).

    Article  CAS  Google Scholar 

  37. G. Fiori, G. Iannaccone, and G. Klimeck, IEEE Trans. Nanotechnol. 6, 475 (2007).

    Article  Google Scholar 

  38. Y. Goswami, B. Ghosh, and P.K. Asthana, RSC Adv. 4, 10761 (2014).

    Article  CAS  Google Scholar 

  39. S. Manikandan and N. Balamurugan, J. Comput. Electron. 19, 613 (2020).

    Article  Google Scholar 

  40. J. Madan and R. Chaujar, IEEE Trans. Device Mater. Reliab. 16, 227 (2016).

    Article  CAS  Google Scholar 

  41. R. Chaujar, R. Kaur, M. Saxena, M. Gupta, and R. Gupta, Superlattices Microstruct. 44, 143 (2008).

    Article  CAS  Google Scholar 

  42. Y. Pratap, S. Haldar, R. Gupta, and M. Gupta, IEEE Trans. Device Mater. Reliab. 14, 418 (2014).

    Article  CAS  Google Scholar 

  43. S.K. Gupta, A.S. Rawat, Y.K. Verma, and V. Mishra, Silicon 11, 257 (2019).

    Article  CAS  Google Scholar 

  44. J.M. Guo, C. Li, Z.R. Yan, H.F. Jiang, and Y.Q. Zhuang, Micro. Nano Lett. 14, 1140 (2019).

    CAS  Google Scholar 

  45. S. Shekhar, J. Madan, and R. Chaujar, Appl. Phys. A 124, 739 (2018).

    Article  CAS  Google Scholar 

  46. S. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, Appl. Phys. Lett. 80, 3817 (2002).

    Article  CAS  Google Scholar 

  47. A.D. Franklin, S.O. Koswatta, D. Farmer, G.S. Tulevski, J.T. Smith, H. Miyazoe, W. Haensch, in 2012 International Electron Devices Meeting (IEEE, 2012), pp. 4–5.

  48. M.S. Sarker, M.M. Islam, M.N.K. Alam, and M.R. Islam, Results Phys. 6, 879 (2016).

    Article  Google Scholar 

  49. K. Boucart and A.M. Ionescu, Solid. State. Electron. 51, 1500 (2007).

    Article  CAS  Google Scholar 

  50. P. Bal, M. Akram, P. Mondal, and B. Ghosh, J. Comput. Electron. 12, 782 (2013).

    Article  Google Scholar 

  51. A. Kumari, S. Rani, and B. Singh, J. Electron. Mater. 48, 3078 (2019).

    Article  CAS  Google Scholar 

  52. S.Z. Ahmed, M.S. Shawkat, M.I.H. Chowdhury, S.M. Mominuzzaman, in 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2015), pp. 388–390.

  53. T. Joshi, B. Singh, and Y. Singh, J. Comput. Electron. 19, 658 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibesh Kanti Saha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Mustakim, N. & Saha, J.K. Linearity Performance and Distortion Analysis of Carbon Nanotube Tunneling FET. J. Electron. Mater. 50, 1496–1505 (2021). https://doi.org/10.1007/s11664-020-08707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08707-5

Keywords

Navigation