Skip to main content
Log in

The Construction of a ZnO/CdS Heterostructure with Synergistic Enhanced Effect in Photocatalytic and Self-Cleaning Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we explore the synergy of the photocatalytic reaction endowed with improvement of self-cleaning performance. A ZnO/CdS heterostructure was successfully synthesized by hydrothermal-chemical bath deposition on a zinc substrate. The effect of different experimental parameters for its structure and properties were systematically studied using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and UV–Vis spectrophotometry. In addition, superhydrophobic ZnO/CdS was treated by stearic acid modification with a contact angle as high as 160 ± 1.5° and rolling angle as low as 5 ± 1.2°. In the self-cleaning test and photocatalytic degradation test, the superhydrophobic heterostructure exhibited excellent anti-fouling properties and photocatalytic performance. Moreover, after the photocatalytic degradation test, the contact angle of the modified superhydrophobic surface remained 142 ± 2.4°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Barthlott and C. Neinhuis, Planta 202, 1 (1997).

    Article  CAS  Google Scholar 

  2. C. Neinhuis and W. Barthlott, Ann. Bot. Oxford U.K. 79, 667 (1997).

    Article  Google Scholar 

  3. Y.M. Zheng, X.F. Gao, and L. Jiang, Soft Matter 3, 178 (2007).

    Article  CAS  Google Scholar 

  4. X. Yao, Y.L. Song, and L. Jiang, Adv. Mater. 23, 719 (2011).

    Article  CAS  Google Scholar 

  5. V.A. Ganesh, H. Kumar, S. Nair, and S. Ramakrishna, J. Mater. Chem. 21, 16304 (2011).

    Article  CAS  Google Scholar 

  6. K. Funakoshi and T. Nonami, J. Am. Ceram. Soc. 89, 2782 (2006).

    Article  CAS  Google Scholar 

  7. H.M. Ahmed, M.M. Abdellatif, S. Ibrahim, and F.H.H. Abdellatif, Prog. Org. Coat. 129, 52 (2019).

    Article  CAS  Google Scholar 

  8. Y.B. Park, H. Im, M. Im, and Y.K. Choi, J. Mater. Chem. 21, 633 (2010).

    Article  Google Scholar 

  9. A. Kumar and B. Gogoi, Tribol. Int. 122, 114 (2018).

    Article  CAS  Google Scholar 

  10. T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, and R.H.A. Ras, Adv. Mater. 23, 673 (2011).

    Article  CAS  Google Scholar 

  11. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, Nucl. Instrum. Methods Phys. Res. 206, 898 (2003).

    Article  CAS  Google Scholar 

  12. Z.W. Huang, R.S. Gurney, T. Wang, and D. Liu, J. Colloid Interface Sci. 527, 107 (2018).

    Article  CAS  Google Scholar 

  13. Y.C. Chang, J.Y. Guo, C.M. Chen, H.W. Di, and C.C. Hsu, Nanoscale 9, 13235 (2017).

    Article  CAS  Google Scholar 

  14. B. Panigrahy, M. Aslam, D. Misra, M. Ghosh, and D. Bahadur, Adv. Funct. Mater. 20, 1161 (2010).

    Article  CAS  Google Scholar 

  15. J.H. Kim and I.H. Yer, Ceram. Int. 41, 10227 (2015).

    Article  CAS  Google Scholar 

  16. C. Yang, Q.S. Li, L.M. Tang, K. Xin, A. Bai, and Y.M. Yu, Appl. Surf. Sci. 357, 1928 (2015).

    Article  CAS  Google Scholar 

  17. J. Iqbal, T. Jan, M. Ismail, N. Ahmad, A. Arif, M. Khan, M. Abbasi, and A. Arshad, Ceram. Int. 40, 7487 (2014).

    Article  CAS  Google Scholar 

  18. H.M. Chiu, T.H. Yang, Y.C. Hsueh, T.P. Perng, and J.M. Wu, Appl. Catal. B 163, 156 (2015).

    Article  CAS  Google Scholar 

  19. F. Xu, Y.F. Yuan, H.J. Han, D.P. Wu, Z.Y. Gao, and K. Jiang, CrystEngComm 14, 3615 (2012).

    Article  CAS  Google Scholar 

  20. C.M. Li, T. Ahmed, M.G. Ma, T. Edvinsson, and J.F. Zhu, Appl. Catal. B 138, 175 (2013).

    Article  Google Scholar 

  21. M.H. Lin, X.Q. Yi, H. Wan, J. Zhang, F.J. Huang, and F. Xia, Anal. Chem. 92, 9963 (2020).

    Article  CAS  Google Scholar 

  22. Y.Z. Wang, S.P. Zhu, X.R. Chen, Y.G. Tang, Y.F. Jiang, Z.G. Peng, and H.Y. Wang, Appl. Surf. Sci. 307, 263 (2014).

    Article  CAS  Google Scholar 

  23. S.S.P. Selvin, N. Radhika, O. Borang, I.S. Lydia, and J.P. Merlin, J. Mater. Sci.: Mater. Electron. 28, 6722 (2017).

    Google Scholar 

  24. A.M. Babeer and L. Aamir, Nano Hybrids 25, 84 (2019).

    Article  Google Scholar 

  25. S.Q. Wei, Y.Y. Chen, Y.Y. Ma, and Z.C. Shao, J. Mol. Catal. A: Chem. 331, 112 (2010).

    Article  CAS  Google Scholar 

  26. M. Molaei, M. Marandi, E. Saievar, N. Taghavinia, B. Liu, H.D. Sun, and X.W. Sun, J. Lumin. 132, 467 (2012).

    Article  CAS  Google Scholar 

  27. X. Gao, X.X. Liu, Z.M. Zhu, Y. Gao, Q.B. Wang, F. Zhu, and Z. Xie, Sci. Rep. 7, 973 (2017).

    Article  Google Scholar 

  28. X. Yang, Y. Yang, B. Wang, T. Wang, Y. Wang, and D. Meng, Solid State Sci. 92, 31 (2019).

  29. Q.Y. Zhu, F. Teng, Z.S. Wang, Y.L. Wang, and N. Lu, Appl. Nano Mater. 2, 3813 (2019).

    Article  CAS  Google Scholar 

  30. F.L. Heale, M. Einhorn, K. Page, I.P. Parkin, and C.J. Carmalt, RSC Adv. 9, 20332 (2019).

    Article  CAS  Google Scholar 

  31. X.H. Xu, Z.Z. Zhang, and J. Yang, Langmuir 26, 3654 (2010).

    Article  CAS  Google Scholar 

  32. T.F. Wu, Y.Z. Pan, and L. Li, J. Colloid Interface Sci. 348, 265 (2010).

    Article  CAS  Google Scholar 

  33. X. Liu, T.C. Zhang, H.Q. He, L. Ouyang, and S.J. Yuan, J. Alloys Compd. 834, 155210 (2020).

    Article  CAS  Google Scholar 

  34. X.Z. Lv, X.C. Liu, Q.M. Sun, Y.Q. Wang, and B. Yan, Ceram. Int. 43, 3306 (2017).

    Article  CAS  Google Scholar 

  35. G.F. Chen, X.L. Song, H. Zhang, X.N. Zhang, J. Zhang, Y. Wang, J.B. Gao, Y.M. Zhao, C. Zhang, and J.G. Tao, Surf. Coat. Technol. 320, 467 (2017).

    Article  CAS  Google Scholar 

  36. S. Wang, B.C. Zhu, M.J. Liu, L.Y. Zhang, J.G. Yu, and M.H. Zhou, Appl. Catal. B 243, 19 (2019).

    Article  CAS  Google Scholar 

  37. C.H. Chen, Z.C. Li, G.J. Wang, J.C. Liao, M.Y. Li, S.S. Lv, and W. Li, Dalton Trans. 45, 3750 (2016).

    Article  CAS  Google Scholar 

  38. D. Zhang, J. Li, Q.G. Wang, and Q.S. Wu, J. Mater. Chem. A 1, 8622 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (No. 2017B030301012), Hubei key Laboratory of Forensic Science (Hubei University of Police (2018KFKT05), The Science and Technology Project of the Hubei Provincial Department of Education (B2019207) and the Applied Innovation Project of the Ministry of Public Security of the People's Republic of China (2016YYCXHBST023). Financial support is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, Z., Cao, B. et al. The Construction of a ZnO/CdS Heterostructure with Synergistic Enhanced Effect in Photocatalytic and Self-Cleaning Performance. J. Electron. Mater. 50, 129–137 (2021). https://doi.org/10.1007/s11664-020-08555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08555-3

Keywords

Navigation