Skip to main content
Log in

Theoretical and Experimental Overview of Structural, Dielectric, Crystallographic, Electronic, Optical, and Physical Tensors of α-DIPAB and Iodine-Doped α-DIPAB Molecular Ferroelectric Crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Self-consistent ab initio calculations of the structural, crystallographic, electronic, optical, and physical properties as well as spontaneous polarization of P21 (α)-ferroelectric phase of diisopropylammonium bromide (α-DIPAB) molecular crystal are carried out. Examination of the total density of states as obtained using the generalized gradient approximation and hybrid exchange–correlation functional (HSE06) methods yields an optical bandgap of ∼ 5 eV and 6 eV, respectively. Furthermore, by using the Berry phase approach, we found that polar DIPAB exhibits a spontaneous polarization of 22.64 μC/cm2, indicating that this remarkable ferroelectric molecule could be used as an alternative to replace several known ferroelectrics for piezoelectric and optoelectronic applications such as capacitors, sensors, and data storage as well as microelectromechanical system (MEMS) devices. Using the vdW + DF2 approximation, we identify the majority of the vibrational modes in the Raman spectra and analyze the modes generated by the bromine (Br) deficiency. We find that the Br deficiency strongly affects the electric and elastic properties of α-DIPAB. Furthermore, the elastic, dielectric, and piezoelectric tensors of α-DIPAB are calculated and interpreted. α-DIPAB is found to exhibit a static dielectric tensor of ∼ 2.5, i.e., slightly smaller than that of typical perovskite-based ferroelectrics. In addition, the clamped-ion piezoelectric tensor is calculated. We found that the piezoelectric coefficient e21 corresponding to applying uniaxial strain in the direction perpendicular to the N–C bonds is smaller than the e22 principle coefficient. Moreover, the components e15 = 0.220 C/m2 and e35 = −0.2032 C/m2 correspond to applying shear strain η31, indicating a reasonable piezoelectric response of this polar crystal and making it a cheap attractive candidate for piezoelectric applications. The components of the elastic moduli tensor are calculated and interpreted. The α-DIPAB exhibits Young’s modulus of up to 50 GPa along specific crystalline directions despite its relatively low hardness. We attribute such a large value to the presence of a dense H–Br bond network between the Br and DIPAB molecule. The Poisson ratio is also strongly anisotropic, with values ranging from 0.5 to 0.2. The DIPAB systems are brittle based on the ratio between the bulk and shear elastic constants, suggesting that this material has potential for use in flexible electronic applications. A real-part dielectric anomaly at T = 140 K induced by iodine doping of α-DIPAB exhibits switchable behavior. This abnormality can be attributed to suppression of ferroelectricity induced by trapping of vortices at dislocation defects generated by iodine. Another dielectric anomaly found in the vicinity of the Curie temperature of α-DIPAB can be explained in terms of a structural phase-induced ferroelectric-to-paraelectric transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Luo, S. Zhang, Q. Li, C. Xu, Z. Yang, Q. Yan, Y. Zhang, and T. Shrout, ACS Appl. Mater. Interfaces 8, 15506 (2016).

    CAS  Google Scholar 

  2. C. Hu, H. Tian, X. Meng, G. Shi, W. Cao, and Z. Zhou, RSC Adv. 7, 7003 (2017).

    CAS  Google Scholar 

  3. S. Zhang and F. Li, J. Appl. Phys. 111, 031301 (2012).

    Google Scholar 

  4. M.-Q. Cai, Z. Yin, M.-S. Zhang, and Y.-Z. Li, Chem. Phys. Lett. 401, 4 (2005).

    Google Scholar 

  5. F.-Z. Yao, Q. Yu, K. Wang, Q. Li, and J.-F. Li, RSC Adv. 4, 20062 (2014).

    CAS  Google Scholar 

  6. D. Pang and Z. Yi, RSC Adv. 7, 19448–19456 (2017).

    CAS  Google Scholar 

  7. J. Scott, Science 315, 954 (2007).

    CAS  Google Scholar 

  8. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press, 2001).

    Google Scholar 

  9. S. Horiuchi and Y. Tokura, Nat. Mater. 7, 357 (2008).

    CAS  Google Scholar 

  10. L.E. Cross, Ferroelectrics 76, 241 (1987).

    CAS  Google Scholar 

  11. A. Piecha, A. Gągor, R. Jakubas, and P. Szklarz, Cryst. Eng. Commun. 15, 5 (2013).

    Google Scholar 

  12. J. Li, Y. Liu, Y. Zhang, H.-L. Cai, and R.-G. Xiong, Phys. Chem. Chem. Phys. 15, 48 (2013).

    Google Scholar 

  13. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, and R. Vaish, Energy Environ. Sci. 7, 12 (2014).

    Google Scholar 

  14. H.-Y. Ye, Y. Zhang, S.-I. Noro, K. Kubo, M. Yoshitake, Z.-Q. Liu, H.-L. Cai, D.-W. Fu, H. Yoshikawa, K. Awaga, R.-G. Xiong, and T. Nakamura, Sci. Rep. 3, 2249 (2013).

    Google Scholar 

  15. K. Gao, M. Gu, X. Qiu, X. Ying, H.-Y. Ye, Y. Zhang, J. Sun, X. Meng, F.M. Zhang, D. Wu, H.-L. Cai, and X. Wu, J. Mater. Chem. C 2, 46 (2014).

    Google Scholar 

  16. D.W. Fu, W. Zhang, H.L. Cai, J.Z. Ge, Y. Zhang, and R.G. Xiong, Adv. Mater. 23, 5658–5662 (2011).

    CAS  Google Scholar 

  17. D.-W. Fu, H.-L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang, X.-Y. Chen, G. Giovannetti, M. Capone, J. Li, and R.-G. Xiong, Science 339, 425–428 (2013).

    CAS  Google Scholar 

  18. Q. Ye, Y.-M. Song, G.-X. Wang, K. Chen, D.-W. Fu, P.W. HongChan, J.-S. Zhu, S. Huang, and R.-G. Xiong, J. Am. Chem. Soc. 128, 6554–6555 (2006).

    CAS  Google Scholar 

  19. H.-Y. Ye, D.-W. Fu, Y. Zhang, W. Zhang, R.-G. Xiong, and S.D. Huang, J. Am. Chem. Soc. 131, 42–43 (2008).

    Google Scholar 

  20. D. Mao, I. Mejia, H. Stiegler, B. Gnade, and M. Quevedo-Lopez, J. Appl. Phys. 108, 094102 (2010).

    Google Scholar 

  21. J. Valasek, Phys. Rev. 17, 475 (1921).

    CAS  Google Scholar 

  22. J. Valasek, Phys. Rev. 19, 478 (1922).

    CAS  Google Scholar 

  23. J. Valasek, Phys. Rev. 20, 639 (1922).

    CAS  Google Scholar 

  24. J. Valasek, Phys. Rev. 24, 560 (1924).

    CAS  Google Scholar 

  25. R. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    CAS  Google Scholar 

  26. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Google Scholar 

  27. J.P. Perdew, J. Chevary, S. Vosko, K.A. Jackson, M.R. Pederson, D. Singh, and C. Fiolhais, Phys. Rev. B 48, 4978 (1993).

    CAS  Google Scholar 

  28. D.A. Bonnell, Science 339, 401–402 (2013).

    CAS  Google Scholar 

  29. A. Alsaad, N. Al-Aqtash, R. Sabirianov, A. Ahmad, Q.M. Al-Albataineh, I. Qattan, and Z. Albataineh, Front. Phys. 7, 203 (2019).

    Google Scholar 

  30. A. Alsaad, N. Al-Aqtash, and R. Sabirianov, APS March Meeting Abstract (2015).

  31. A. Alsaad, C.M. Marin, N. Alaqtash, H.-W. Chao, T.-H. Chang, C.L. Cheung, A. Ahmad, I.A. Qattan, and R. Sabirianov, Data Brief 16, 667–684 (2018).

    Google Scholar 

  32. A. Alsaad, I.A. Qattan, A. Ahmad, N. Al-Aqtash, and R. Sabirianov, J. Phys: Conf. Ser. 92, 1 (2015).

    Google Scholar 

  33. A. Alsaad, C.M. Marin, N. Alaqtash, H.-W. Chao, T.-H. Chang, C.L. Cheung, A. Ahmad, I.A. Qattan, and R. Sabirianov, J. Phys. Chem. Solids 113, 82–85 (2018).

    CAS  Google Scholar 

  34. G. Giovannetti, C. Ortix, M. Marsman, M. Capone, J. Van Den Brink, and J. Lorenzana, Nat. Commun. 2, 1–6 (2011).

    Google Scholar 

  35. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    CAS  Google Scholar 

  36. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    CAS  Google Scholar 

  37. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 3865 (1996).

    Google Scholar 

  38. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).

    CAS  Google Scholar 

  39. J. Heyd and G.E. Scuseria, J. Chem. Phys. 120, 7274–7280 (2004).

    CAS  Google Scholar 

  40. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    CAS  Google Scholar 

  41. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 1063 (2006).

    Google Scholar 

  42. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, and B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

    CAS  Google Scholar 

  43. K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, and D.C. Langreth, Phys. Rev. B 82, 081101 (2010).

    Google Scholar 

  44. J. Klimeš, D.R. Bowler, and A. Michaelides, Phys. Rev. B 83, 13 (2011).

    Google Scholar 

  45. A. Puzder, M. Dion, and D.C. Langreth, J. Chem. Phys. 124, 164105 (2006).

    Google Scholar 

  46. G. Kresseand and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Google Scholar 

  47. K. Berland, V.R. Cooper, K. Lee, E. Schröder, T. Thonhauser, P. Hyldgaard, and B. Lundqvist, Rep. Prog. Phys. 78, 066501 (2015).

    Google Scholar 

  48. A.J. Lovinger, Science 220, 1115–1121 (1983).

    CAS  Google Scholar 

  49. J.H. Lee, L. Fang, E. Vlahos, X. Ke, Y.W. Jung, L.F. Kourkoutis, J.-W. Kim, P. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. Hammel, K. Rabe, S. Kamba, J. Schubert, J. Freeland, D. Muller, C. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. Schlom, Nature 466, 954–958 (2010).

    CAS  Google Scholar 

  50. W. Zhang and R.-G. Xiong, Chem. Rev. 112, 1163–1195 (2012).

    CAS  Google Scholar 

  51. C. Thirmal, P. Biswas, Y. Shin, T. Noh, N. Giridharan, A. Venimadhav, and P. Murugavel, J. Appl. Phys. 120, 124107 (2016).

    Google Scholar 

  52. Q.M. Al-Bataineh, A. Alsaad, A. Ahmad, and A. Al-Sawalmih, J. Electron. Mater. 48, 5028–5038 (2019).

    CAS  Google Scholar 

  53. G. Román-Pérez and J.M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

    Google Scholar 

  54. J. Klimeš, D.R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2009).

    Google Scholar 

  55. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999).

    CAS  Google Scholar 

  56. P. Dowben, D. McIlroy, D. Li, and H. Phys, Chem. Rare Earth. 24, 1–46 (1997).

    CAS  Google Scholar 

  57. J. Scott, Phase Transit. 30, 107–110 (1991).

    CAS  Google Scholar 

  58. M. Emam-Ismail, M. El-Hagary, E. Shaaban, and A. Al-Hedeib, J. Alloys Compd. 532, 16–24 (2012).

    CAS  Google Scholar 

  59. C. Kittel, Introduction to Solid State Physics, 6th ed. (Tokyo: Maruzen, 1986), pp. 124–129.

    Google Scholar 

  60. J. Tauc, Amorphous and Liquid Semiconductors (Berlin: Springer, 2012).

    Google Scholar 

  61. L. Wan, T. Nishimatsu, and S. Beckman, J. Appl. Phys. 111, 104107 (2012).

    Google Scholar 

  62. J. Axe, Phys. Rev. 157, 429 (1967).

    CAS  Google Scholar 

  63. P.S.H. Ghosez, X. Gonze, and J.-P. Michenaud, Ferroelectrics 206, 205–217 (1998).

    Google Scholar 

  64. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    CAS  Google Scholar 

  65. S. Schulz, M. Caro, E. O’Reilly, and O. Marquardt, Phys. Rev. B 84, 125312 (2011).

    Google Scholar 

  66. X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).

    CAS  Google Scholar 

  67. M.A. Caro, S. Schulz, and E.P. O’Reilly, J. Phys. Condens. Matter 25, 025803 (2012).

    Google Scholar 

  68. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Vol. 7 (Berlin: Springer, 1996).

    Google Scholar 

  69. S. Prosandeev and L. Bellaiche, Phys. Rev. B 75, 172109 (2007).

    Google Scholar 

  70. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).

    CAS  Google Scholar 

  71. S.-E. Park, S. Wada, L. Cross, and T.R. Shrout, J. Appl. Phys. 86, 2746–2750 (1999).

    CAS  Google Scholar 

  72. O. Auciello, J.F. Scott, and R. Ramesh, Phys. Today 51, 22–27 (1998).

    CAS  Google Scholar 

  73. R. Levitskii, I. Zachek, T. Verkholyak, and A. Moina, Phys. Rev. B 67, 174112 (2003).

    Google Scholar 

  74. A. Moina, R. Levitskii, and I. Zachek, Phys. Rev. B 71, 134108 (2005).

    Google Scholar 

  75. K. Gilleo, Handbook of Flexible Circuits (Berlin: Springer, 1998).

    Google Scholar 

  76. C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, and A. Javey, Nat. Mater. 12, 899–904 (2013).

    CAS  Google Scholar 

  77. R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W.-H. Yeo, J. Park, J. Song, Y. Li, Y. Huang, A. Gorbach, and J. Rogers, Nat. Mater. 12, 938–944 (2013).

    CAS  Google Scholar 

  78. Z. Suo, MRS Bull. 37, 218 (2012).

    CAS  Google Scholar 

  79. S. Wagner and S. Bauer, MRS Bull. 37, 207–213 (2012).

    Google Scholar 

  80. S. Wang, M. Li, J. Wu, D.-H. Kim, N. Lu, Y. Su, Z. Kang, Y. Huang, and J. Rogers, J. Appl. Mech. 79, 3 (2012).

    Google Scholar 

  81. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, Nature 499, 458 (2013).

    CAS  Google Scholar 

  82. A. Alsaad, N. Alaqtash, A. Al Kadhim, R.F. Sabirianov, A. Ahmad, I.A. Qattan, and M.-A. Al-Akhras, Eur. Phys. J. B 93, 5 (2020).

    CAS  Google Scholar 

  83. S.-C. Wu, G.H. Fecher, S. Shahab Naghavi, and C. Felser, J. Appl. Phys. 125, 082523 (2019).

    Google Scholar 

  84. S. Pugh, Philos. Mag. 45, 823 (1954).

    CAS  Google Scholar 

  85. W. Voight, Teubner, 962 (1928).

  86. A. Reuss, J. Appl. Math. Mech. 9, 49–58 (1929).

    CAS  Google Scholar 

  87. D. Chung, W. Buessem, F. Vahldiek, and S. Mersol, Anisotropy in Single Crystal Refractory Compounds (New York: Plenum, 1968), p. 217.

    Google Scholar 

  88. S.I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Google Scholar 

  89. G. Kaige, Z. Binbin, C. Yunqing, and C. Xiaobing, R. Soc. Open Sci. 5, 181397 (2018).

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Nebraska for providing computational access to the clusters at the Holland computing center. The authors acknowledge Jordan University of Science and Technology for technical and financial support and express their gratitude for the unlimited computational access provided by Holland Computing Center affiliated to the University of Nebraska/Lincoln. We acknowledge Khalifa University of Science and Technology, Abu Dhabi, UAE for generous technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Alsaad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaad, A.M., Qattan, I.A., Ahmad, A.A. et al. Theoretical and Experimental Overview of Structural, Dielectric, Crystallographic, Electronic, Optical, and Physical Tensors of α-DIPAB and Iodine-Doped α-DIPAB Molecular Ferroelectric Crystals. J. Electron. Mater. 49, 7112–7132 (2020). https://doi.org/10.1007/s11664-020-08486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08486-z

Keywords

Navigation