Skip to main content
Log in

Physio-Chemical Properties and Dielectric Behavior of As-Grown Manganese Oxide (γ-Mn2O3) Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Semiconducting metal oxide nanostructured materials are demonstrating efficient use and functional properties in devices. Manganese oxide (Mn2O3) is one of the smart semiconductor metal oxides. The hydrothermal method was found suitable to prepare γ-Mn2O3 nanoparticles. The nanostructural characterization using various advanced tools confirmed the purity and polymorph of the as-prepared γ-Mn2O3 nanoparticles. Optical analyses exposed the presence of a possible dual-band-gap in γ-Mn2O3 nanoparticles. A strong blue shift of 1.3 eV estimates the activation energy (Ea) of the nanoparticles. Furthermore, γ-Mn2O3 nanoparticles were used as dielectrics to explore the dielectric response of the material in a broad frequency domain (50 Hz–30 MHz). The dielectric spectroscopy analyses revealed the regular value of the dielectric constant (∼ 9) in the high-frequency domain, the low value of the tangent loss (0.05 ≤ tanδ ≥ 1.34), the frequency power law-dependent ac conductivity, the occurrence of single dielectric relaxation process of relaxation time 160 μs, and a non-Debye-type relaxation behavior in the γ-Mn2O3 nanoparticles. The properties assessed here indicate the functional-behavior and prospective application of the γ-Mn2O3 nanoparticles in devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Armstrong and P.G. Bruce, Nature 381, 499 (1996).

    Article  CAS  Google Scholar 

  2. M.M. Abdullah, J. King Saud Univ. Sci. 32, 1048 (2020).

    Article  Google Scholar 

  3. M.M. Abdullaha, M.S. Akhtar, and S.M. Al-Abbasa, Curr. Nanosci. 14, 1 (2018).

    Google Scholar 

  4. P. Singh, M.M. Abdullah, S. Sagadevan, C. Kaur, and S. Ikram, Optik. 182, 512 (2019).

    Article  CAS  Google Scholar 

  5. M.M. Abdullah, Curr. Nanosci. 13, 1 (2017).

    Article  CAS  Google Scholar 

  6. M.M. Abdullah, F.M. Rajab, and S.M. Al-Abbas, AIP Adv. 4, 027121 (2014).

    Article  CAS  Google Scholar 

  7. M.M. Abdullah, M.M. Rahman, H. Bouzid, M. Faisal, S.B. Khan, S.A. Al-Sayari, and A.A. Ismail, J. Rare Earths 33, 214 (2015).

    Article  CAS  Google Scholar 

  8. A. Jamal, M.M. Raahman, S.B. Khan, M.M. Abdullah, M. Faisaal, A.M. Asiri, A. Aslam, P. Khan, and K. Akhtar, J. Chem. Soc. Pak. 35, 570 (2013).

    Google Scholar 

  9. M. Faisal, S.B. Khan, M.M. Rahman, A. Jamala, and M.M. Abdullah, Appl. Surf. Sci. 258, 7515 (2012).

    Article  CAS  Google Scholar 

  10. M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, A.M. Asiri, and M.M. Abdullah, Chem. Eng. J. 173, 178 (2011).

    Article  CAS  Google Scholar 

  11. G.X. Wang, X.P. Shen, J. Yao, and J. Park, Carbon 47, 2049 (2009).

    Article  CAS  Google Scholar 

  12. P. Guo, H. Song, and X. Chen, Electrochem. Commun. 11, 1320 (2009).

    Article  CAS  Google Scholar 

  13. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  CAS  Google Scholar 

  14. X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).

    Article  CAS  Google Scholar 

  15. L.P. Ma, Z.S. Wu, J. Li, E.D. Wu, W.C. Ren, and H.M. Cheng, Int. J. Hydrog. Energy 34, 2329 (2009).

    Article  CAS  Google Scholar 

  16. Y.F. Shen, R.P. Zerger, and R.N. Deguzman, Science 260, 511 (1993).

    Article  CAS  Google Scholar 

  17. S. Lei, K. Tang, and Z. Fang, Mater. Lett. 60, 53 (2006).

    Article  CAS  Google Scholar 

  18. Y.X. Zhao, F. Wei, and Y. Yu, Chem. Res. Chin. Univ. 24, 620 (2008).

    Article  CAS  Google Scholar 

  19. Z. Yang, W. Zhang, and Q. Wang, Chem. Phys. Lett. 418, 46 (2006).

    Article  CAS  Google Scholar 

  20. Y. Yang, L. Xiao, Y. Zhao, and F. Wang, Int. J. Electrochem. Sci. 3, 67 (2008).

    CAS  Google Scholar 

  21. S. Sharma, P. Chauhan, and S. Husain, Adv. Mater. Proc. 1, 220 (2016).

    Article  Google Scholar 

  22. A.M. Morales and C.M. Lieber, Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  23. J. Cong, K. Zhai, Y. Chai, D. Shang, D.D. Khalyavin, R.D. Johnson, D.P. Kozlenko, S.E. Kichanov, A.M. Abakumov, A.A. Tsirlin, L. Dubrovinsky, X. Xu, Z. Sheng, S.V. Ovsyannikov, and Y. Sun, Nat. Commun. 9, 2996 (2018).

    Article  CAS  Google Scholar 

  24. V. Khopkar and B. Sahoo, Phys. Chem. Chem. Phys. 22, 2986 (2020).

    Article  CAS  Google Scholar 

  25. T.F. Khoon, J. Hassan, Z.A. Wahab, and R.S. Azis, Eng. Sci. Technol. 19, 2081 (2016).

    Google Scholar 

  26. Y. Chen, Y. Zhang, Q. Yao, G. Zhou, S. Fu, and H. Fan, J. Solid State Chem. 180, 1218 (2007).

    Article  CAS  Google Scholar 

  27. M. Chandra, S. Yadav, S. Rayaprol, and K. Singh, AIP Conf. Proc. 1942, 110023 (2018).

    Article  CAS  Google Scholar 

  28. M. Chandra, S. Yadav, and K. Singh, AIP Conf. Proc. 1953, 050057 (2018).

    Article  CAS  Google Scholar 

  29. R.M. Mahani, A.G. Darwish, and A.M. Ghoneim, J. Electr. Mater. 49, 2130 (2020).

    Article  CAS  Google Scholar 

  30. W.L. He, Y.C. Zhang, X.X. Zhang, H. Wang, and H. Yan, J. Cryst. Growth 252, 285 (2003).

    Article  CAS  Google Scholar 

  31. V.J. Angadi, A.V. Anupama, R. Kumar, H.M. Somashekarappa, S. Matteppanavar, B. Rudraswamy, and B. Sahoo, Ceram. Int. 43, 523 (2017).

    Article  CAS  Google Scholar 

  32. V.J. Angadi, A.V. Anupama, R. Kumar, H.K. Choudhary, S. Matteppanavar, H.M. Somashekarappa, B. Rudraswamy, and B. Sahoo, Mater. Chem. Phys. 199, 313 (2017).

    Article  CAS  Google Scholar 

  33. A.V. Anupamaa, R. Kumar, H.K. Choudhary, V.J. Angadi, H.M. Somashekarappa, B. Rudraswamy, and B. Sahoo, Radiat. Phys. Chem. 166, 108506 (2020).

    Article  CAS  Google Scholar 

  34. S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, and B. Sahoo, J. Magn. Magn. Mater. 433, 29 (2017).

    Article  CAS  Google Scholar 

  35. M.M. Rahman, G. Gruner, M.S. Al-Ghamd, M.A. Daous, S.B. Khan, and A.M. Asiri, Chem. Cent. J. 7, 60 (2013).

    Article  CAS  Google Scholar 

  36. K.S. Pugazhvadivu, K. Ramachandran, and K. Tamilarasan, Phys. Procedia 49, 205 (2013).

    Article  CAS  Google Scholar 

  37. M. Sharrouf, R. Awad, M. Roumié, and S. Marhaba, Mater. Sci. Appl. 6, 850 (2015).

    CAS  Google Scholar 

  38. N.R. Chandar, S. Agilan, N. Muthukumarasamy, and R. Ganesh, J. Ovonic Res. 14, 441 (2018).

    CAS  Google Scholar 

  39. M. Zheng, H. Zhang, X. Gong, R. Xu, Y. Xiao, H. Dong, X. Liu, and Y. Liu, Nanoscale Res. Lett. 8, 166 (2013).

    Article  CAS  Google Scholar 

  40. X. Niu, H. Wei, K. Tang, W. Liu, G. Zhao, and Y. Yang, RSC Adv. 5, 66271 (2015).

    Article  CAS  Google Scholar 

  41. R. Naeem, M.A. Ehsan, R. Yahya, M. Sohail, H. Khaledi, and M. Mazhar, Dalton Trans. 45, 14928 (2016).

    Article  CAS  Google Scholar 

  42. M.M. Abdullah, M.A. Khan, G. Bhagavannarayana, and M.A. Wahab, Sci. Adv. Mater. 3, 1 (2011).

    Article  CAS  Google Scholar 

  43. V. Vasudevan, R.R. Babu, A.R. Nelcy, G. Bhagavannarayana, and K. Ramamurthi, Bull. Mater. Sci. 34, 469 (2011).

    Article  CAS  Google Scholar 

  44. A.K. Jonscher, Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  45. H.O. Jethva and M.J. Joshi, Bulg. J. Phys. 45, 275 (2018).

    Google Scholar 

  46. J. Plocharski and W. Wieczoreck, Solid State Ionics 28–30, 979 (1988).

    Article  Google Scholar 

  47. P. Ganguly and A.K. Jha, Bull. Mater. Sci. 34, 907 (2011).

    Article  CAS  Google Scholar 

  48. M.C. Castro, C.W.A. Paschoal, F.C. Snyder, and M.W. Lufaso, J. Appl. Phys. 104, 104114 (2008).

    Article  CAS  Google Scholar 

  49. Y.D. Kolekar, L.J. Sanchez, and C.V. Ramana, J. Appl. Phys. 115, 144106 (2014).

    Article  CAS  Google Scholar 

  50. M.B. Hossen and A.K.M.A. Hossain, J. Adv. Ceram. 4, 217 (2015).

    Article  CAS  Google Scholar 

  51. E.M. Alkoy and A. Berksoy-Yavuz, IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 59, 212 (2012).

    Article  Google Scholar 

  52. R. Jacob, H.G. Nair, and J. Isac, Process. Appl. Ceram. 9, 73 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Abdullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M.M., Siddiqui, S.A. & Al-Abbas, S.M. Physio-Chemical Properties and Dielectric Behavior of As-Grown Manganese Oxide (γ-Mn2O3) Nanoparticles. J. Electron. Mater. 49, 4410–4417 (2020). https://doi.org/10.1007/s11664-020-08171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08171-1

Keywords

Navigation