Skip to main content
Log in

Core-Double Shell Nano-hybrids Designed by Multi-walled Carbon Nanotubes, Polyaniline and Polythiophenes in PBDT-DTNT:PC61BM Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Core–mantle–shell supramolecules composed of carbon nanotube (CNT)-graft-polyaniline (PANI), poly(3-hexylthiophene) (P3HT), and poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) precursors were designed and utilized in PBDT-DTNT:phenyl-C61-butyric acid methyl ester (PC61BM) solar cells. Weight ratio of polymer:CNT-graft-PANI was 9:1 and the weight ratios were 1:1 in binary and 1:1:1 in ternary systems. Diameters of core(CNT)–mantle(PANI), core(CNT)–mantle(PANI)–shell(P3HT), and core(CNT)–mantle(PANI)–shell(PBDT-DTNT) nanostructures ranged in 75–90 nm, 145–160 nm, and 120–130 nm, respectively. Efficacies of 6.82% (13.92 mA/cm2, 0.71 V, 69%, 7.1 × 10−3 cm2/V s and 1.9 × 10−2 cm2/V s) and 7.60% (14.66 mA/cm2, 0.73 V, 71%, 9.0 × 10−3 cm2/V s and 3.4 × 10−2 cm2/V s) were acquired for photovoltaics based on the nanostructures having PBDT-DTNT and P3HT shells, respectively. The PANI mantle may act as both acceptor (accepting the electrons from core) and donor (donating the electrons to shell) in the configuration of core–mantle–shell supramolecules. The P3HT shells acted better than the PBDT-DTNT ones, originated from the simple structure of P3HT backbones and their more ordered and thicker shells, and thus had larger charge mobilities and currents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).

    Article  CAS  Google Scholar 

  2. M.H. Rahaman and H. Tsuji, J. Appl. Polym. Sci. 129, 2502 (2013).

    Article  CAS  Google Scholar 

  3. H.C. Chen, Y.H. Chen, C.C. Liu, Y.C. Chien, S.W. Chou, and P.T. Chou, Chem. Mater. 24, 4766 (2012).

    Article  CAS  Google Scholar 

  4. S.C. Price, A.C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc. 133, 4625 (2011).

    Article  CAS  Google Scholar 

  5. H. Zhou, L. Yang, A.C. Stuart, S.C. Price, S. Liu, and W. You, Angew. Chem. Int. Ed. 50, 2995 (2011).

    Article  CAS  Google Scholar 

  6. S. van Bavel, S. Veenstra, and J. Loos, Macromol. Rapid Commun. 31, 1835 (2010).

    Article  Google Scholar 

  7. Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).

    Article  CAS  Google Scholar 

  8. B. Minnaert and M. Burgelman, Prog. Photovolt. 15, 741 (2007).

    Article  CAS  Google Scholar 

  9. C. Bounioux, E.A. Katz, and R. Yerushalmi-Rozen, Polym. Adv. Technol. 23, 1129 (2012).

    Article  CAS  Google Scholar 

  10. S. Cataldo, P. Salice, E. Menna, and B. Pignataro, Energy Environ. Sci. 5, 5919 (2012).

    Article  CAS  Google Scholar 

  11. M.H. Ham, G.L. Paulus, C.Y. Lee, C. Song, K. Kalantar-Zadeh, W. Choi, J.H. Han, and M.S. Strano, ACS Nano 4, 6251 (2010).

    Article  CAS  Google Scholar 

  12. B. Ratier, J.M. Nunzi, M. Aldissi, T.M. Kraft, and E. Buncel, Polym. Int. 61, 342 (2012).

    Article  CAS  Google Scholar 

  13. S. Ren, M. Bernardi, R.R. Lunt, V. Bulovic, J.C. Grossman, and S. Gradecak, Nano Lett. 11, 5316 (2011).

    Article  CAS  Google Scholar 

  14. P.M. Ajayan, Chem. Rev. 99, 1787 (1999).

    Article  CAS  Google Scholar 

  15. R.H. Baughman, A.A. Zakhidov, and W.A. De Heer, Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  16. M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, and R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001).

    Article  Google Scholar 

  17. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).

    Article  CAS  Google Scholar 

  18. J. Geng and T. Zeng, J. Am. Chem. Soc. 128, 16827 (2006).

    Article  CAS  Google Scholar 

  19. L. Dai and A.W. Mau, Adv. Mater. 13, 899 (2001).

    Article  CAS  Google Scholar 

  20. I. Musa, M. Baxendale, G.A.J. Amaratunga, and W. Eccleston, Synth. Met. 102, 1250 (1999).

    Article  CAS  Google Scholar 

  21. B. Pradhan, S.K. Batabyal, and A.J. Pal, J. Phys. Chem. B 110, 8274 (2006).

    Article  CAS  Google Scholar 

  22. S.G. Bachhav and D.R. Patil, Am. J. Mater. Sci. 5, 90 (2015).

    Google Scholar 

  23. X. Jiang, Y. Bin, and M. Matsuo, Polymer 46, 7418 (2005).

    Article  CAS  Google Scholar 

  24. Y. Luo, F.A. Santos, T.W. Wagner, E. Tsoi, and S. Zhang, J. Phys. Chem. B 118, 6038 (2014).

    Article  CAS  Google Scholar 

  25. L. Li, C.Y. Li, and C. Ni, J. Am. Chem. Soc. 128, 1692 (2006).

    Article  CAS  Google Scholar 

  26. J. Liu, J. Zou, and L. Zhai, Macromol. Rapid Commun. 30, 1387 (2009).

    Article  CAS  Google Scholar 

  27. J. Zou, S.I. Khondaker, Q. Huo, and L. Zhai, Adv. Funct. Mater. 19, 479 (2009).

    Article  CAS  Google Scholar 

  28. B. Philip, J. Xie, A. Chandrasekhar, J. Abraham, and V.K. Varadan, Smart Mater. Struct. 13, 295 (2004).

    Article  CAS  Google Scholar 

  29. B.K. Kuila, S. Malik, S.K. Batabyal, and A.K. Nandi, Macromolecules 40, 278 (2007).

    Article  CAS  Google Scholar 

  30. S. Agbolaghi, S. Charoughchi, S. Aghapour, F. Abbasi, A. Bahadori, and R. Sarvari, Sol. Energy 170, 138 (2018).

    Article  CAS  Google Scholar 

  31. M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, and Y. Cao, J. Am. Chem. Soc. 133, 9638 (2011).

    Article  CAS  Google Scholar 

  32. V.H. Nguyen, L. Tang, and J.J. Shim, Colloid Polym. Sci. 291, 2237 (2013).

    Article  CAS  Google Scholar 

  33. Y.J. Shin, S.H. Kim, D.H. Yang, H.S. Kwon, and J.S. Shin, J. Ind. Eng. Chem. 16, 380 (2010).

    Article  CAS  Google Scholar 

  34. V.H. Nguyen and J.J. Shim, J. Spectrosc. (2015). https://doi.org/10.1155/2015/297804.

    Article  Google Scholar 

  35. J. Stejskal, P. Kratochvil, and N. Radhakrishnan, Synth. Met. 61, 225 (1993).

    Article  CAS  Google Scholar 

  36. S. Zenoozi, S. Agbolaghi, M. Nazari, and F. Abbasi, Mater. Sci. Semicond. Process. 64, 85 (2017).

    Article  CAS  Google Scholar 

  37. S. Aghapour, S. Agbolaghi, S. Charoughchi, R. Sarvari, and F. Abbasi, Polym. Int. 68, 64 (2019).

    Article  CAS  Google Scholar 

  38. B. Xu, J. Choi, A.N. Caruso, and P.A. Dowben, Appl. Phys. Lett. 80, 4342 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to As’ad Alizadeh or Samira Agbolaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A., Agbolaghi, S. Core-Double Shell Nano-hybrids Designed by Multi-walled Carbon Nanotubes, Polyaniline and Polythiophenes in PBDT-DTNT:PC61BM Solar Cells. J. Electron. Mater. 49, 435–443 (2020). https://doi.org/10.1007/s11664-019-07702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07702-9

Keywords

Navigation