Skip to main content
Log in

Temperature Effect on Electronic Parameters of CuPc/n-Si Heterojunction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports the effect of temperature on electronic properties of Al/CuPC/n-Si heterostructure diodes. The diode-controlling parameters are extracted from the conventional current–voltage (IV) curve of the fabricated Al/CuPc/n-Si heterojunction diode. The calculated parameters, such as barrier height (Φb), ideality factor (n), and series resistance (Rs), obtained from experimental results, show significant temperature dependence and demonstrate improvement in their values in the temperature ranging from 300 K to 330 K. These extracted values are further verified by determining them while using Cheung functions and Norde’s technique. The values of n and Φb show that the former and the latter decreases and increases, respectively, with increasing temperature. This is attributed to thermionic emission theory. The fabricated heterojunction diode shows thermal stability, and the space-charge-limited current (SCLC) transport is the most frequently occurring process in the fabricated device at all temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Guillaud, J. Simon, and J.P. Germain, Coord. Chem. Rev. 178, 1433 (1998).

    Article  Google Scholar 

  2. W.F. Aerts and S. Verlaak, Electron. Devices 49, 2124 (2002).

    Article  Google Scholar 

  3. H. Kuhn, W.C. Kimbrell, J.E. Fowler, and C.N. Barry, Synth. Met. 57, 3707 (1993).

    Article  Google Scholar 

  4. F. Yang, M. Shtein, and S.R. Forrest, Nat. Mater. 4, 37 (2005).

    Article  Google Scholar 

  5. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, and C.J. Brabec, Adv. Mater. 18, 789 (2006).

    Article  Google Scholar 

  6. M. Bouvet, H. Xiong, and V. Parra, Sensor Actuat. B Chem. 145, 501 (2010).

    Article  Google Scholar 

  7. S. Jeong, Y. SooHan, Y. Kwon, M.S. Choi, G. Cho, K.S. Kim, and K. Youngkyoo, Synth. Met. 160, 2109 (2010).

    Article  Google Scholar 

  8. I. Mcculloch, Nat. Mater. 4, 583 (2005).

    Article  Google Scholar 

  9. L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, Nature 434, 194 (2005).

    Article  Google Scholar 

  10. L. Huang, F. Zhu, C. Liu, H. Wang, Y. Geng, and D. Yan, Org. Electr. 11, 195 (2010).

    Article  Google Scholar 

  11. C. Kufazvinei, M. Ruether, J. Wang, and W. Blau, Org. Electr. 10, 674 (2009).

    Article  Google Scholar 

  12. Ö. Güllü and A. Türüt, Sol. Energy Mater. Sol. Cells 92, 1205 (2008).

    Article  Google Scholar 

  13. M.E. Aydin, F. Yakuphanoglu, J.H. Eom, and D.H. Hwang, Phys. B Condens. Matter. 387, 239 (2007).

    Article  Google Scholar 

  14. K. Akkılıç, Y.S. Ocak, T. Kiliçoglu, S. Ilhan, and H. Temel, Curr. Appl. Phys. 10, 337 (2010).

    Article  Google Scholar 

  15. J. Drechsel, B. Männig, D. Gebeyehu, M. Pfeiffer, K. Leo, and H. Hoppe, Org. Electr. 5, 175 (2004).

    Article  Google Scholar 

  16. C.C. Leznoff and A.P.B. Lever, Phthalocyanines: Properties and Applications (New York: VCH, 1993).

    Google Scholar 

  17. S. Ambily and C.S. Menon, Solid State Commun. 94, 485 (1995).

    Article  Google Scholar 

  18. F.H. Moser and A.L. Thomas, The Phthalocyanines. Manufacture and Applications (Boca Raton: CRC Press, 1983).

    Google Scholar 

  19. Ş. Karataş and Ş. Altındal, Mater. Sci. Eng. B 122, 133 (2005).

    Article  Google Scholar 

  20. I. Ullah, M. Shah, M. Khan, and F. Wahab, J. Electron. Mater. 45, 1175 (2016).

    Article  Google Scholar 

  21. M. Baldo, W. M. A. Paul Blom Kahn, and P. Peumans. Physics and Technology of Organic Semiconductor Devices (MRS Proceedings, Cambridge University Press, 2014).

  22. R. Kumar, R. Kaur, M. Sharma, M. Kaur, and S. K. Tripathi. AIP Conference Proceedings (2015), p. 030078.

  23. A. Hussain, Charge Transport Properties of Metal/Metal-Phthalocyanine/n-Si Structures thesis, Chemnitz University of Technology, Germany (2010).

  24. Z. Ahmad and M.H. Sayyad, Phys. E Low Dimens. Syst. Nanostruct. 41, 631 (2009).

    Article  Google Scholar 

  25. V. Janardhanam, A.A. Kumar, V.R. Reddy, and P.N. Reddy, J. Alloys Compd. 485, 467 (2009).

    Article  Google Scholar 

  26. M.B. Reddy, A.A. Kumar, V. Janardhanam, V.R. Reddy, and P.N. Reddy, Curr. Appl. Phys. 9, 972 (2009).

    Article  Google Scholar 

  27. M. Sağlam, A. Ateş, M.A. Yıldırım, B. Güzeldir, and A. Astam, Curr. Appl. Phys. 10, 513 (2010).

    Article  Google Scholar 

  28. Ö.F. Yüksel, A.B. Selçuk, and S.B. Ocak, Phys. B Condense Matter 403, 2690 (2008).

    Article  Google Scholar 

  29. H. Altuntas, A. Bengi, U. Aydemir, T. Asar, S.S. Cetin, I. Kars, S. Altindal, and S. Ozcelik, Mater. Sci. Semicond. Process. 12, 224 (2009).

    Article  Google Scholar 

  30. A. Ahmad and R.A. Collins, Phys. Status Solidi 126, 411 (1991).

    Article  Google Scholar 

  31. A.K. Hassan and R.D. Gould, J. Phys. D Appl. Phys. 22, 1162 (1989).

    Article  Google Scholar 

  32. N. Şimşir, H. Şafak, Ö.F. Yüksel, and M. Kuş, Curr. Appl. Phys. 12, 1510 (2012).

    Article  Google Scholar 

  33. D.S. Reddy, M.B. Reddy, N.N.K. Reddy, and V.R. Reddy, J. Mod. Phys. 2, 113 (2011).

    Article  Google Scholar 

  34. S. Kumar, Y.S. Katharria, K. Sugam, and D. Kanjilal, Solid-State Electron. 50, 1835 (2006).

    Article  Google Scholar 

  35. J.G. Simmons, Phys. Rev. Lett. 15, 967 (1965).

    Article  Google Scholar 

  36. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  37. M.E. Aydin, F. Yakuphanoglu, and T. Kılıçoğlu, Synth. Met. 157, 1080 (2007).

    Article  Google Scholar 

  38. G. Chilana and R. Gupta, J. Appl. Phys. 65, 2859 (1989).

    Article  Google Scholar 

  39. Ö. Güllü, S. Asubay, S. Aydogan, and A. Türüt, Phys. E Low Dimens. Syst. Nanostruct. 42, 1411 (2010).

    Article  Google Scholar 

  40. Z. Ahmad, M.H. Sayyad, and KhS Karimov, J. Semicond. 7, 31 (2010).

    Google Scholar 

  41. S. K. Marda. Photovoltaic cells based on copper phthalocyanine and cadmium sulfide heterojunction. University of Kentucky Master’s Thesis” Master of Science in Electrical Engineering (MSEE) 2008.

  42. M. Shah, M.H. Sayyad, and Kh.S. Karimov, J. Semiconduct. 32, 044001 (2011).

    Article  Google Scholar 

  43. D.K. Schroder, Semiconductor Material and Device Characterization (Chichester: Wiley, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irfan Ullah or Shaukat Ali Khattak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Shah, M., Khattak, S.A. et al. Temperature Effect on Electronic Parameters of CuPc/n-Si Heterojunction. J. Electron. Mater. 48, 5609–5616 (2019). https://doi.org/10.1007/s11664-019-07400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07400-6

Keywords

Navigation