Skip to main content

Advertisement

Log in

Metal–Organic Frameworks as Electro-Catalysts for Oxygen Reduction Reaction in Electrochemical Technologies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fuel cells and metal-air batteries have been comprehensively investigated in recent years because of their high energy capacity, good efficiency and environmental friendly nature. Slow kinetics of oxygen reduction reaction (ORR), one of the main processes in fuel cells and metal-air batteries, is improved with platinum catalysts that confine the prevalent utilization of such electrochemical devices with increasing worth for them. However, platinum catalysts after long time usage exhibit weak operations due to the crossover effect and agglomeration. Metal–organic frameworks (MOFs), the porous crystalline materials, consisting of metal centers coordinated to organic ligands, are appropriate catalysts due to their superior properties such as high surface area and carbon content, tunable pore size and diverse metal nodes. In this review, we summarize the recent progress in synthesis and design of MOF-derived ORR electrocatalysts in acidic and alkaline fuel cells. Our focus is on the different methods developed for improving the activity and stability of MOF based ORR electrocatalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Tranchemontagne, J.R. Hunt, and O.M. Yaghi, Tetrahedron 64, 8553 (2008).

    Google Scholar 

  2. P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J.-M. Greneche, I. Margiolaki, and G. Férey, Chem. Commun. 27, 2820 (2007).

    Google Scholar 

  3. W. Morris, B. Volosskiy, S. Demir, F. Gándara, P.L. McGrier, H. Furukawa, D. Cascio, J.F. Stoddart, and O.M. Yaghi, Inorg. Chem. 51, 6443 (2012).

    Google Scholar 

  4. T.G. Glover, G.W. Peterson, B.J. Schindler, D. Britt, and O. Yaghi, Chem. Eng. Sci. 66, 163 (2011).

    Google Scholar 

  5. S. Aguado, J. Canivet, and D. Farrusseng, J. Mater. Chem. 21, 7582 (2011).

    Google Scholar 

  6. A. Aijaz, N. Fujiwara, and Q. Xu, J. Am. Chem. Soc. 136, 6790 (2014).

    Google Scholar 

  7. D. Umeyama, S. Horike, M. Inukai, and S. Kitagawa, J. Am. Chem. Soc. 135, 11345 (2013).

    Google Scholar 

  8. M. Sadakiyo, T. Yamada, and H. Kitagawa, J. Am. Chem. Soc. 131, 9906 (2009).

    Google Scholar 

  9. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, and C. Kreuz, Nat. Mater. 9, 172 (2010).

    Google Scholar 

  10. J.-H. Wang, M. Li, and D. Li, Chem. Sci. 4, 1793 (2013).

    Google Scholar 

  11. A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, P. Horcajada, T. Devic, C. Serre, and H. Garcia, Catal. Sci. Technol. 2, 324 (2012).

    Google Scholar 

  12. A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent, and M.J. Rosseinsky, Angew. Chem. 124, 7558 (2012).

    Google Scholar 

  13. V.M. Suresh, S.J. George, and T.K. Maji, Adv. Funct. Mater. 23, 5585 (2013).

    Google Scholar 

  14. K.G.M. Laurier, F. Vermoortele, R. Ameloot, D.E. De Vos, J. Hofkens, and M.B.J. Roeffaers, J. Am. Chem. Soc. 135, 14488 (2013).

    Google Scholar 

  15. C.-W. Kung, Y.-S. Li, M.-H. Lee, S.-Y. Wang, W.-H. Chiang, and K.-C. Ho, J. Mater. Chem. A 4, 10673 (2016).

    Google Scholar 

  16. H.V. Le, Q.T.T. Nguyen, P.K.T. Nguyen, and H.T. Nguyen, J. Electron. Mater. 47, 6918 (2018).

    Google Scholar 

  17. F. Gándara and T.D. Bennett, IUCrJ 1, 563 (2014).

    Google Scholar 

  18. C.-W. Kung, T.-H. Chang, L.-Y. Chou, J.T. Hupp, O.K. Farha, and K.-C. Ho, Chem. Commun. 51, 2414 (2015).

    Google Scholar 

  19. M. Klimakow, P. Klobes, A.F. Thünemann, K. Rademann, and F. Emmerling, Chem. Mater. 22, 5216 (2010).

    Google Scholar 

  20. J. Kim, S.-T. Yang, S.B. Choi, J. Sim, J. Kim, and W.-S. Ahn, J. Mater. Chem. 21, 3070 (2011).

    Google Scholar 

  21. M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, and O.K. Farha, Chem. Commun. 49, 9449 (2013).

    Google Scholar 

  22. A. Martinez Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn, and J. Gascon, Cryst. Growth Des. 12, 3489 (2012).

    Google Scholar 

  23. N. Stock and S. Biswas, Chem. Rev. 112, 933 (2011).

    Google Scholar 

  24. N. Sahiner, S. Demirci, and M. Yildiz, J. Electron. Mater. 46, 790 (2017).

    Google Scholar 

  25. J.-C. Wang, F.-W. Ding, J.-P. Ma, Q.-K. Liu, J.-Y. Cheng, and Y.-B. Dong, Inorg. Chem. 54, 10865 (2015).

    Google Scholar 

  26. C. Wang, Z. Xie, K.E. de Krafft, and W. Lin, J. Am. Chem. Soc. 133, 13445 (2011).

    Google Scholar 

  27. H. Wang, F. Yin, G. Li, B. Chen, and Z. Wang, Int. J. Hydrogen Energy 39, 16179 (2014).

    Google Scholar 

  28. K. Xi, S. Cao, X. Peng, C. Ducati, R.V. Kumar, and A.K. Cheetham, Chem. Commun. 49, 2192 (2013).

    Google Scholar 

  29. G. Xu, B. Ding, L. Shen, P. Nie, J. Han, and X. Zhang, J. Mater. Chem. A 1, 4490 (2013).

    Google Scholar 

  30. F. Zheng, Y. Yang, and Q. Chen, Nat. Commun. 5, 5261 (2014).

    Google Scholar 

  31. B. Liu, H. Shioyama, T. Akita, and Q. Xu, J. Am. Chem. Soc. 130, 5390 (2008).

    Google Scholar 

  32. P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, and D. Cao, Energy Environ. Sci. 7, 442 (2014).

    Google Scholar 

  33. X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, and X. Li, J. Mater. Chem. A 2, 14064 (2014).

    Google Scholar 

  34. L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco, Z. Chen, J. Zou, and Z. Zhu, Carbon 82, 417 (2015).

    Google Scholar 

  35. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B 108, 17886 (2004).

    Google Scholar 

  36. O. Oloniyo, S. Kumar, and K. Scott, J. Electron. Mater. 41, 921 (2012).

    Google Scholar 

  37. J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, and R.R. Adzic, Angew. Chem. 117, 2170 (2005).

    Google Scholar 

  38. A. Morozan, B. Jousselme, and S. Palacin, Energy Environ. Sci. 4, 1238 (2011).

    Google Scholar 

  39. R.A. Mirzaie, A.A. Firooz, and N.M. Khori, J. Electron. Mater. 47, 6995 (2018).

    Google Scholar 

  40. Y. Devrim and A. Albostan, J. Electron. Mater. 45, 3900 (2016).

    Google Scholar 

  41. H. Sun, J. Chem. Technol. Biotechnol. 87, 1167 (2012).

    Google Scholar 

  42. L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, and R.S. Ruoff, Energy Environ. Sci. 5, 7936 (2012).

    Google Scholar 

  43. D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Science 351, 361 (2016).

    Google Scholar 

  44. J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, and L. Dai, Angew. Chem. Int. Ed. 55, 2230 (2016).

    Google Scholar 

  45. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Nat. Mater. 10, 780 (2011).

    Google Scholar 

  46. H. Dong, H. Yu, X. Wang, Q. Zhou, and J. Sun, J. Chem. Technol. Biotechnol. 88, 774 (2013).

    Google Scholar 

  47. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, Angew. Chem. Int. Ed. 53, 7860 (2014).

    Google Scholar 

  48. H. Tang, H. Yin, J. Wang, N. Yang, D. Wang, and Z. Tang, Angew. Chem. 125, 5695 (2013).

    Google Scholar 

  49. A. Serov, K. Artyushkova, and P. Atanassov, Adv. Energy Mater. 4, 1301735 (2014).

    Google Scholar 

  50. R. Jasinski, Nature 201, 1212 (1964).

    Google Scholar 

  51. F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, and P. Zelenay, Energy Environ. Sci. 4, 114 (2010).

    Google Scholar 

  52. U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, and S. Mukerjee, J. Phys. Chem. C 118, 8999 (2014).

    Google Scholar 

  53. C. Gumeci, N. Leonard, Y. Liu, S. McKinney, B. Halevi, and S.C. Barton, J. Mater. Chem. A 3, 21494 (2015).

    Google Scholar 

  54. S. Ganesan, N. Leonard, and S.C. Barton, Phys. Chem. Chem. Phys. 16, 4576 (2014).

    Google Scholar 

  55. R. Kothandaraman, V. Nallathambi, K. Artyushkova, and S.C. Barton, Appl. Catal. B Environ. 92, 209 (2009).

    Google Scholar 

  56. E.F. Holby and P. Zelenay, Nano Energy 29, 54 (2016).

    Google Scholar 

  57. X. Li, Y. Fang, X. Lin, M. Tian, X. An, Y. Fu, R. Li, J. Jin, and J. Ma, J. Mater. Chem. A 3, 17392 (2015).

    Google Scholar 

  58. S. Dou, X. Li, L. Tao, J. Huo, and S. Wang, Chem. Commun. 52, 9727 (2016).

    Google Scholar 

  59. Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng, Z. Kang, Z. Liu, J.Y. Lee, and D. Zhao, Carbon 111, 641 (2017).

    Google Scholar 

  60. I.A. Khan, Y. Qian, A. Badshah, M.A. Nadeem, and D. Zhao, ACS Appl. Mater. Interfaces 8, 17268 (2016).

    Google Scholar 

  61. Q. Zhu, W. Xia, T. Akita, R. Zou, and Q. Xu, Adv. Mater. 28, 6391 (2016).

    Google Scholar 

  62. M. Wu, K. Wang, M. Yi, Y. Tong, Y. Wang, and S. Song, ACS Catal. 7, 6082 (2017).

    Google Scholar 

  63. Z. Hu, Z. Zhang, Z. Li, M. Dou, and F. Wang, ACS Appl. Mater. Interfaces 9, 16109 (2017).

    Google Scholar 

  64. Z. Meng, S. Cai, R. Wang, H. Tang, S. Song, and P. Tsiakaras, Appl. Catal. B Environ. 244, 120 (2019).

    Google Scholar 

  65. Z. Zhang, S. Liu, X. Li, T. Qin, L. Wang, X. Bo, Y. Liu, L. Xu, S. Wang, and X. Sun, ACS Appl. Mater. Interfaces 10, 22023 (2018).

    Google Scholar 

  66. Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H. Wang, and G. Wu, Adv. Mater. 26, 1378 (2014).

    Google Scholar 

  67. A. Kong, Q. Lin, C. Mao, X. Bu, and P. Feng, Chem. Commun. 50, 15619 (2014).

    Google Scholar 

  68. A. Kong, C. Mao, Q. Lin, X. Wei, X. Bu, and P. Feng, Dalton Trans. 44, 6748 (2015).

    Google Scholar 

  69. Y. Liu, H. Jiang, J. Hao, Y. Liu, H. Shen, W. Li, and J. Li, ACS Appl. Mater. Interfaces 9, 31841 (2017).

    Google Scholar 

  70. M. Jahan, Z. Liu, and K.P. Loh, Adv. Funct. Mater. 23, 5363 (2013).

    Google Scholar 

  71. M. Jahan, Q. Bao, and K.P. Loh, J. Am. Chem. Soc. 134, 6707 (2012).

    Google Scholar 

  72. S.J. Garibay and S.M. Cohen, Chem. Commun. 46, 7700 (2010).

    Google Scholar 

  73. M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, and K.P. Lillerud, Chem. Mater. 22, 6632 (2010).

    Google Scholar 

  74. D. Feng, Z. Gu, J. Li, H. Jiang, Z. Wei, and H. Zhou, Angew. Chem. 124, 10453 (2012).

    Google Scholar 

  75. D. Feng, W.C. Chung, Z. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, and H.C. Zhou, J. Am. Chem. Soc. 135, 17105 (2013).

    Google Scholar 

  76. P.M. Usov, B. Huffman, C.C. Epley, M.C. Kessinger, J. Zhu, W.A. Maza, and A.J. Morris, ACS Appl. Mater. Interfaces 9, 33539 (2017).

    Google Scholar 

  77. S. Sohrabi, S. Dehghanpour, and M. Ghalkhani, ChemCatChem 8, 2356 (2016).

    Google Scholar 

  78. J. Mao, L. Yang, P. Yu, X. Wei, and L. Mao, Electrochem. Commun. 19, 29 (2012).

    Google Scholar 

  79. M. Jiang, L. Li, D. Zhu, X. Zhao, H. Zhang, and X. Zhao, J. Mater. Chem. A 2, 5323 (2014).

    Google Scholar 

  80. S. Sohrabi, S. Dehghanpour, and M. Ghalkhani, J. Mater. Sci. 53, 3624 (2018).

    Google Scholar 

  81. B. Volosskiy, H. Fei, Z. Zhao, S. Lee, M. Li, Z. Lin, B. Papandrea, C. Wang, Y. Huang, and X. Duan, ACS Appl. Mater. Interfaces 8, 26769 (2016).

    Google Scholar 

  82. Q. Mo, N. Chen, M. Deng, L. Yang, and Q. Gao, ACS Appl. Mater. Interfaces 9, 37721 (2017).

    Google Scholar 

  83. W. Xia, J. Zhu, W. Guo, L. An, D. Xia, and R. Zou, J. Mater. Chem. A 2, 11606 (2014).

    Google Scholar 

  84. S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, and Z. Tang, ACS Nano 8, 12660 (2014).

    Google Scholar 

  85. S. Ma, G.A. Goenaga, A.V. Call, and D. Liu, Chem. Eur. J. 17, 2063 (2011).

    Google Scholar 

  86. B.Y. Xia, Y. Yan, N. Li, H. Bin Wu, X.W.D. Lou, and X. Wang, Nat. Energy 1, 15006 (2016).

    Google Scholar 

  87. S. You, X. Gong, W. Wang, D. Qi, X. Wang, X. Chen, and N. Ren, Adv. Energy Mater. 6, 1501497 (2016).

    Google Scholar 

  88. T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, J. Am. Chem. Soc. 136, 13925 (2014).

    Google Scholar 

  89. B. Chen, G. Ma, Y. Zhu, and Y. Xia, Sci. Rep. 7, 5266 (2017).

    Google Scholar 

  90. G. Zhang, C. Li, J. Liu, L. Zhou, R. Liu, X. Han, H. Huang, H. Hu, Y. Liu, and Z. Kang, J. Mater. Chem. A 2, 8184 (2014).

    Google Scholar 

  91. L. Huang, X. Zhang, Y. Han, Q. Wang, Y. Fang, and S. Dong, J. Mater. Chem. A 5, 18610 (2017).

    Google Scholar 

  92. X. Hua, J. Luo, C. Shen, and S. Chen, Catal. Sci. Technol. 8, 1945 (2018).

    Google Scholar 

  93. S. Fu, C. Zhu, Y. Zhou, G. Yang, J.-W. Jeon, J. Lemmon, D. Du, S.K. Nune, and Y. Lin, Electrochim. Acta 178, 287 (2015).

    Google Scholar 

  94. S. Pandiaraj, H.B. Aiyappa, R. Banerjee, and S. Kurungot, Chem. Commun. 50, 3363 (2014).

    Google Scholar 

  95. Y. Zhao, X. Liu, K.X. Yao, L. Zhao, and Y. Han, Chem. Mater. 24, 4725 (2012).

    Google Scholar 

  96. Y. Chen, C. Wang, Z. Wu, Y. Xiong, Q. Xu, S. Yu, and H. Jiang, Adv. Mater. 27, 5010 (2015).

    Google Scholar 

  97. J. Yang, F. Zhao, and B. Zeng, RSC Adv. 5, 22060 (2015).

    Google Scholar 

  98. D. Higgins, G. Wu, H.T. Chung, U. Martinez, S. Ma, Z. Chen, and P. Zelenay, ECS Trans. 61, 35 (2014).

    Google Scholar 

  99. S. Wu, Y. Zhu, Y. Huo, Y. Luo, L. Zhang, Y. Wan, B. Nan, L. Cao, Z. Wang, and M. Li, Sci. China Mater. 60, 654 (2017).

    Google Scholar 

  100. J. Park, H. Lee, Y.E. Bae, K.C. Park, H. Ji, N.C. Jeong, M.H. Lee, O.J. Kwon, and C.Y. Lee, ACS Appl. Mater. Interfaces 9, 28758 (2017).

    Google Scholar 

  101. D. Zhao, J. Shui, L.R. Grabstanowicz, C. Chen, S.M. Commet, T. Xu, J. Lu, and D. Liu, Adv. Mater. 26, 1093 (2014).

    Google Scholar 

  102. J. Lu, W. Zhou, L. Wang, J. Jia, Y. Ke, L. Yang, K. Zhou, X. Liu, Z. Tang, and L. Li, ACS Catal. 6, 1045 (2016).

    Google Scholar 

  103. B.Y. Guan, L. Yu, and X.W.D. Lou, Energy Environ. Sci. 9, 3092 (2016).

    Google Scholar 

  104. F. Yin, G. Li, and H. Wang, Catal. Commun. 54, 17 (2014).

    Google Scholar 

  105. L. Yang, N. Larouche, R. Chenitz, G. Zhang, M. Lefèvre, and J.-P. Dodelet, Electrochim. Acta 159, 184 (2015).

    Google Scholar 

  106. S. Zhuang, B.B. Nunna, and E.S. Lee, MRS Commun. 8, 40 (2018).

    Google Scholar 

  107. S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao, and W. Cai, Carbon 106, 74 (2016).

    Google Scholar 

  108. H. Zhong, J. Wang, Y. Zhang, W. Xu, W. Xing, D. Xu, Y. Zhang, and X. Zhang, Angew. Chem. Int. Ed. 53, 14235 (2014).

    Google Scholar 

  109. W. Xia, R. Zou, L. An, D. Xia, and S. Guo, Energy Environ. Sci. 8, 568 (2015).

    Google Scholar 

  110. Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, and J. Chen, Adv. Energy Mater. 4, 1400337 (2014).

    Google Scholar 

  111. J. Xi, Y. Xia, Y. Xu, J. Xiao, and S. Wang, Chem. Commun. 51, 10479 (2015).

    Google Scholar 

  112. S. Patra, S. Sene, C. Mousty, C. Serre, A. Chaussé, L. Legrand, and N. Steunou, ACS Appl. Mater. Interfaces 8, 20012 (2016).

    Google Scholar 

  113. Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho, and G. Wu, Small 11, 1443 (2015).

    Google Scholar 

  114. H. Tang, S. Cai, S. Xie, Z. Wang, Y. Tong, M. Pan, and X. Lu, Adv. Sci. 3, 1500265 (2016).

    Google Scholar 

  115. X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, and G. Wu, Nano Energy 25, 110 (2016).

    Google Scholar 

  116. Z. Li, M. Shao, L. Zhou, Q. Yang, C. Zhang, M. Wei, D.G. Evans, and X. Duan, Nano Energy 25, 100 (2016).

    Google Scholar 

  117. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D.G. Evans, and X. Duan, Adv. Mater. 28, 2337 (2016).

    Google Scholar 

  118. J. Li, Y. Chen, Y. Tang, S. Li, H. Dong, K. Li, M. Han, Y.-Q. Lan, J. Bao, and Z. Dai, J. Mater. Chem. A 2, 6316 (2014).

    Google Scholar 

  119. H. Hu, L. Han, M. Yu, Z. Wang, and X.W.D. Lou, Energy Environ. Sci. 9, 107 (2016).

    Google Scholar 

  120. L. Zhang, X. Wang, R. Wang, and M. Hong, Chem. Mater. 27, 7610 (2015).

    Google Scholar 

  121. W. Yang, X. Liu, L. Chen, L. Liang, and J. Jia, Chem. Commun. 53, 4034 (2017).

    Google Scholar 

  122. X. Zhang, J. Guo, P. Guan, C. Liu, H. Huang, F. Xue, X. Dong, S.J. Pennycook, and M.F. Chisholm, Nat. Commun. 4, 1924 (2013).

    Google Scholar 

  123. K. Manna, P. Ji, Z. Lin, F.X. Greene, A. Urban, N.C. Thacker, and W. Lin, Nat. Commun. 7, 12610 (2016).

    Google Scholar 

  124. H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, and X. Meng, Angew. Chem. 128, 14522 (2016).

    Google Scholar 

  125. P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, and Z. Deng, Angew. Chem. Int. Ed. 55, 10800 (2016).

    Google Scholar 

  126. Q. Lai, Y. Zhao, Y. Liang, J. He, and J. Chen, Adv. Funct. Mater. 26, 8334 (2016).

    Google Scholar 

Download references

Acknowledgments

Financial support by the Alzahra University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Ghalkhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, S., Ghalkhani, M. Metal–Organic Frameworks as Electro-Catalysts for Oxygen Reduction Reaction in Electrochemical Technologies. J. Electron. Mater. 48, 4127–4137 (2019). https://doi.org/10.1007/s11664-019-07187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07187-6

Keywords

Navigation