Skip to main content
Log in

Direct Ink Writing of Flexible Electronics on Paper Substrate with Graphene/Polypyrrole/Carbon Black Ink

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Direct ink writing is an interesting and attractive method to replace traditional fabrication techniques such as etching, milling, and lithography for flexible electronics because of its simple process, low cost, green nature, and good prospects for development and application. In this work, graphene/polypyrrole (G/P) binary conductive material was prepared by in situ polymerization of pyrrole monomer and graphene oxide with vitamin C (VC) as green reducing agent. Then graphene/polypyrrole/carbon black (G/P/CB) conductive ink was fabricated using a mixture of alcohol, ethylene glycol, glycerol, and deionized water as solvent. Electronic circuits were obtained by directly writing the prepared conductive ink on flexible substrate, high-gloss photographic paper. When the loading of G/P binary conductive material, carbon black, ethanol, ethylene glycol, glycerol, sodium carboxymethyl cellulose, and deionized water was 54 mg, 546 mg, 12 mL, 30 mL, 30 mL, 480 mg, and 51 mL, the electrical conductivity, solid content, contact angle, and viscosity was 146.3 μS/cm, 4.3%, 34.6°, and 35.8 mPa s, respectively. The ink exhibited excellent water and acid resistance, and the electronic circuit written using the ink showed good uniformity and mechanical flexibility. Scanning electron microscopy evaluation of cross-sections of G/P/CB ink lines on photographic paper and light-emitting diode experiments confirmed that the three-dimensional flexible paper-based conductive circuits containing 9 wt.% G/P formed a complete electrical network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kim, T.G. Yun, C. Kang, M. Son, J. Kang, I. Kim, H. Lee, C. An, and B. Hwang, Mater. Des. 151, 1 (2018).

    Article  Google Scholar 

  2. S.L. Merilampi, T. Bjorninen, A. Vuorimaki, L. Ukkonen, P. Ruuskanen, and L. Sydanheimo, Proc. IEEE 98, 1610 (2010).

    Article  Google Scholar 

  3. H.M. Nur, J.H. Song, J.R.G. Evans, and M.J. Edirisinghe, J. Mater. Sci.: Mater. Electron. 13, 213 (2002).

    Google Scholar 

  4. Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, and C.P. Wong, ACS Appl. Mater. Interfaces 6, 560 (2014).

    Article  Google Scholar 

  5. C. Cheng, J. Li, T. Shi, X. Yu, J. Fan, G. Liao, X. Li, S. Cheng, Y. Zhong, and Z. Tang, J. Mater. Sci.: Mater. Electron. 28, 13556 (2017).

    Google Scholar 

  6. J.M. Petroni, B.G. Lucca, and V.S. Ferreira, Anal. Chim. Acta 954, 88 (2016).

    Article  Google Scholar 

  7. W. Shen, X. Zhang, Q. Huang, Q. Xu, and W. Song, Nanoscale 6, 1622 (2014).

    Article  Google Scholar 

  8. J.H. Yu, K.T. Kang, J.Y. Hwang, S.H. Lee, and H. Kang, Int. J. Precis. Eng. Manuf. 15, 1051 (2014).

    Article  Google Scholar 

  9. A.K. Venkata, K.R.R. Venkata, P.S. Karthik, and P.S. Surya, RSC Adv. 5, 77760 (2015).

    Article  Google Scholar 

  10. W. Wu, S. Yang, S. Zhang, H. Zhang, and C. Jiang, J. Colloid. Interface Sci. 427, 15 (2014).

    Article  Google Scholar 

  11. K.S. Novoselov, A.K. Geim, S.V. Morozow, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  12. A. Bello, O. Fashedemi, J.N. Lekitima, M. Fabiane, A.D. Dodoo, K. Ozoemena, Y. Gogotsi, A. Johnson, and N. Manyala, AIP Adv. 3, 082118 (2013).

    Article  Google Scholar 

  13. T. Chen and L. Dai, Mater. Today 16, 272 (2013).

    Article  Google Scholar 

  14. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  15. E.B. Secor and M.C. Hersam, J. Phys. Chem. Lett. 6, 620 (2015).

    Article  Google Scholar 

  16. A.A. Green and M.C. Hersam, J. Phys. Chem. Lett. 1, 544 (2010).

    Article  Google Scholar 

  17. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, and A.C. Ferrari, ACS Nano 6, 2992 (2012).

    Article  Google Scholar 

  18. D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, and J.N. Coleman, J. Mater. Chem. C 2, 925 (2014).

    Article  Google Scholar 

  19. A.D. Klosterman, L. Li, and J.E. Morris, IEEE Trans. Compon. Pack. Manuf. Technol. A 21, 23 (1998).

    Article  Google Scholar 

  20. Y. Wang, J.W. Shan, and G.J. Weng, J. Appl. Phys. 118, 065101 (2015).

    Article  Google Scholar 

  21. A.Y. Sham and S.M. Notley, J. Colloid Interface Sci. 469, 196 (2016).

    Article  Google Scholar 

  22. A. Ji, Y. Chen, X. Wang, and C. Xu, J. Mater. Sci.: Mater. Electron. 29, 13032 (2018).

    Google Scholar 

  23. Y. Li, X. Lu, F. Su, Y. He, B. Li, Q. Yang, and F. Kang, Carbon 93, 1082 (2015).

    Article  Google Scholar 

  24. J.W. Han, B. Kim, J. Li, and M. Meyyappan, Mater. Res. Bull. 50, 249 (2014).

    Article  Google Scholar 

  25. S. Shukla, K. Domican, K. Karan, S. Bhattacharjee, and M. Secanell, Electrochim. Acta 156, 289 (2015).

    Article  Google Scholar 

  26. P. Sutter, Nat. Mater. 8, 171 (2009).

    Article  Google Scholar 

  27. P. Liu, Y. Huang, and L. Wang, Mater. Lett. 91, 125 (2013).

    Article  Google Scholar 

  28. T.A. Pham, J.S. Kim, J.S. Kim, and Y.T. Jeong, Colloids Surf. A 384, 543 (2011).

    Article  Google Scholar 

  29. Y. Wang, Z. Shi, and J. Yin, ACS Appl. Mater. Interfaces 3, 1127 (2011).

    Article  Google Scholar 

  30. Z. Yang, Y. Huang, D. Ji, G. Xiong, H. Luo, and Y. Wan, Ceram. Int. 43, 10905 (2017).

    Article  Google Scholar 

  31. S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R.B. Kaner, ACS Nano 4, 3845 (2010).

    Article  Google Scholar 

  32. J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, and X. Zhang, Chem. Mater. 22, 2213 (2010).

    Article  Google Scholar 

  33. D. He, L. Shen, X. Zhang, Y. Wang, N. Bao, and H.H. Kung, AIChE J. 60, 2757 (2014).

    Article  Google Scholar 

  34. Z. Zhang, Q. Li, L. Yu, Z. Cui, L. Zhang, and G.A. Bowmaker, Macromolecules 44, 4610 (2011).

    Article  Google Scholar 

  35. J. Thunberg, T. Kalogeropoulos, V. Kuzmenko, D. Hägg, S. Johannesson, G. Westman, and P. Gatenholm, Cellulose 22, 1459 (2015).

    Article  Google Scholar 

  36. H. Zhao, L. Hou, and Y. Lu, Chem. Eng. J. 297, 170 (2016).

    Article  Google Scholar 

  37. J.G. Ayenimo and S.B. Adeloju, Food Chem. 229, 127 (2017).

    Article  Google Scholar 

  38. S. Malinowska, M. Gniadek, T. Rapecki, E. Kurek, Z. Stojek, and M. Donten, J. Solid State Electrochem. 18, 3049 (2014).

    Article  Google Scholar 

  39. H. Kashani, L. Chen, Y. Ito, J. Han, A. Hirata, and M. Chen, Nano Energy 19, 391 (2016).

    Article  Google Scholar 

  40. A.L. Correa-Borroel, S. Gutierrez, E. Arce, R. Cabrera-Sierra, and P. Herrasti, J. Appl. Electrochem. 39, 2385 (2009).

    Article  Google Scholar 

  41. J. Wang, X. Li, X. Du, J. Wang, H. Ma, and X. Jing, Chem. Pap. 71, 293 (2017).

    Article  Google Scholar 

  42. S. Peng, L. Tian, J. Liang, S.G. Mhaisalkar, and S. Ramakrishna, ACS Appl. Mater. Interfaces 4, 397 (2012).

    Article  Google Scholar 

  43. Y. Liu, H. Wang, J. Zhou, L. Bian, E. Zhu, J. Hai, J. Tang, and W. Tang, Electrochim. Acta 112, 44 (2013).

    Article  Google Scholar 

  44. L. Almashat, K. Shin, K. Kalantarzadeh, J.D. Plessis, S.H. Han, R.W. Kojima, R.B. Kaner, D. Li, X. Gou, S.J. Ippolito, and W. Wlodarski, J. Phys. Chem. C 114, 16168 (2010).

    Article  Google Scholar 

  45. S. William, J. Hummers, and E.O. Richard, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  46. J. Wang, X. Wang, C. Xu, M. Zhang, and X. Shang, Polym. Int. 60, 816 (2011).

    Article  Google Scholar 

  47. Standardization Administration of the People’s Republic of China, Determination of adhesive non-volatile content: GB/T 2793-1995, Beijing: China. Standards. Press. (2004) (in Chinese).

  48. Standardization Administration of the People’s Republic of China, Printing Technology-Determination of resistance to various reagents for printed materials and printing inks: GB/T 18724-2008, Beijing: China, Standards, Press, (2009) (in Chinese).

  49. E.Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, and S.O. Kim, J. Mater. Chem. 20, 1907 (2010).

    Article  Google Scholar 

  50. H. Fan, L. Wang, and K. Zhao, Biomacromolecules 11, 2345 (2010).

    Article  Google Scholar 

  51. G. Wu, X. Wang, N. Guan, and L. Li, Appl. Catal. B 136, 177 (2013).

    Article  Google Scholar 

  52. J.H. Park, J.M. Ko, O.O. Park, and D.W. Kim, J. Power Sources 105, 20 (2002).

    Article  Google Scholar 

  53. W. Wang, Q. Hao, W. Lei, X. Xia, and X. Wang, RSC Adv. 2, 10268 (2012).

    Article  Google Scholar 

  54. I. Dolamic, C. Gautier, J. Boudon, N. Shalkevich, and T. Bürgi, J. Phys. Chem. C 112, 5816 (2008).

    Article  Google Scholar 

  55. M. Romagnoli, M.L. Gualtieri, M. Cannio, F. Barbieri, and R. Giovanardi, Mater. Chem. Phys. 182, 263 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (Grant No. 31670556) and Postgraduate Research and Practice Innovation Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyan Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhou, L., Wei, J. et al. Direct Ink Writing of Flexible Electronics on Paper Substrate with Graphene/Polypyrrole/Carbon Black Ink. J. Electron. Mater. 48, 3157–3168 (2019). https://doi.org/10.1007/s11664-019-07085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07085-x

Keywords

Navigation