Skip to main content
Log in

Role of Graphene-Doped Organic/Polymer Nanocomposites on the Electronic Properties of Schottky Junction Structures for Photocell Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the current–voltage characteristics of non-doped and distinct graphene (Gr)-doped polyvinyl alcohol (PVA) interlayers in metal/organic polymer semiconductor type Schottky junction structures (SJSs) were investigated on both forward and reverse biases under distinct levels of illumination. The distinct doping concentration ratios (1%, 3% and 7%) of the Gr added to the PVA interlayers were compared by taking into account the basic electrical parameters, such as saturation current (Io), ideality factor (n), barrier height (ΦBo), series (Rs) and shunt resistance (Rsh). The 7% Gr-doped structure displayed the lowest Io values at zero bias. Moreover, the results indicated that the 7% Gr-doped PVA decreased the n value but increased the ΦBo value compared with values associated with structures that have different doping concentrations. In terms of quality and reliability, the Rs and Rsh values of the SJSs were obtained using Ohm’s law and Cheung’s functions, and the 7% Gr-doped structure eventually displayed more uniformly distributed and lower Rs values and the highest Rsh values. Consequently, the 7% Gr-doped structure had better overall quality because of its superior electrical properties compared with structures that have other doping concentrations. Therefore, the 7% Gr-doped structure can be used as a photodiode in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Soylu, A.A. Al-Ghamdi, and F. Yakuphanoglu, Micro. Eng. 99, 50 (2012).

    Article  CAS  Google Scholar 

  2. Q. Zhang, V. Madangarli, M. Tarplee, and T. Sudarshan, J. Electron. Mater. 30, 196 (2001).

    Article  CAS  Google Scholar 

  3. O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, Ş. Altındal, and I. Uslu, Composites Part B Eng. 98, 260 (2016).

    Article  Google Scholar 

  4. T. Tunç, Ş. Altındal, İ. Dokme, and H. Uslu, J. Electron. Mater. 40, 157 (2011).

    Article  Google Scholar 

  5. I. Dökme, T. Tunç, I. Uslu, and Ş. Altindal, Synth. Metals 161, 474 (2011).

    Article  Google Scholar 

  6. H. Uslu, Ş. Altındal, and İ. Dökme, J. Electron. Mater. 42, 2595 (2013).

    Article  Google Scholar 

  7. S. Altındal Yerişkin, M. Balbaşı, and İ. Orak, J. Mater. Sci. Mater. Electron. 28, 14040 (2017).

    Article  Google Scholar 

  8. O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, İ. Orak, and Ş. Altındal, Composites Part B Eng. 113, 14 (2017).

    Article  Google Scholar 

  9. H. Shirakawa, E. Louis, A. MacDiarmid, C. Chiang, and A. Heeger, J. Chem. Soc. Chem. Com. 1977, 578 (1977).

    Article  Google Scholar 

  10. S. Demirezen, Ş. Altındal, and I. Uslu, Curr. Appl. Phys. 13, 53 (2013).

    Article  Google Scholar 

  11. S. Alialy, H. Tecimer, H. Uslu, and Ş. Altındal, J. Nanomed. Nanotechnol. 3, 1 (2013).

    Article  Google Scholar 

  12. H. Uslu, Ş. Altindal, and İ. Dökme, J. Appl. Phys. 108, 104501 (2010).

    Article  Google Scholar 

  13. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, and P.C. Ramamurthy, Composites Part B Eng. 47, 314 (2013).

    Article  CAS  Google Scholar 

  14. T. Tunç, İ. Uslu, İ. Dökme, Ş. Altındal, and H. Uslu, Inter. J. Polym. Mater. 59, 739 (2010).

    Article  Google Scholar 

  15. S.B. Aziz, J. Electron. Mater. 45, 736 (2016).

    Article  CAS  Google Scholar 

  16. S. Wageh, A.A. Al-Ghamdi, Y. Al-Turki, S.C. Tjong, F. El-Tantawy, and F. Yakuphanoglu, J. Nanoelectron. Optoelectron. 9, 678 (2014).

    Article  CAS  Google Scholar 

  17. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater Sci. 56, 1178 (2011).

    Article  CAS  Google Scholar 

  18. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  20. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  21. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  22. M. Rahmani, H. Ghafoori Fard, T. Ahmadi, S. Rahbarpour, H. Habibiyan, V. Varmazyari, and K. Rahmani, J. Electron. Mater. 46, 6188 (2017).

    Article  CAS  Google Scholar 

  23. M. Yazdan Mehr, S. Volgbert, W.D. van Driel, and G.Q. Zhang, J. Electron. Mater. 46, 5866 (2017).

    Article  CAS  Google Scholar 

  24. S. Konwer, R. Boruah, and S. Dolui, J. Electron. Mater. 40, 2248 (2011).

    Article  CAS  Google Scholar 

  25. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett. 10, 4863 (2010).

    Article  CAS  Google Scholar 

  26. N. Li, Z. Chen, W. Ren, F. Li, and H.-M. Cheng, PNAS 109, 17360 (2012).

    Article  CAS  Google Scholar 

  27. N.F. Atta, A. Galal, and E.H. El-Ads, Graphene: nanotechnology and nanomaterials: biosensors—micro and nanoscale applications (Croatia: IN TECH, 2015), p. 37.

    Google Scholar 

  28. D. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik, and C. Yan, Graphene 1, 30 (2012).

    Article  CAS  Google Scholar 

  29. T.N. Zhou, X.D. Qi, and Q. Fu, eXPRESS Polym. Lett. 7, 747 (2013).

    Article  CAS  Google Scholar 

  30. S.M. Zhang, L. Lin, H. Deng, X. Gao, E. Bilotti, T. Peijs, Q. Zhang, and Q. Fu, Express Polym. Lett. 6, 159 (2012).

    Article  CAS  Google Scholar 

  31. M. Yıldırım, Thin Solid Films 615, 300 (2016).

    Article  Google Scholar 

  32. B.L. Sharma, Metal-semiconductor Schottky barrier junctions and their applications (New York: Plenum Press, 1984).

    Book  Google Scholar 

  33. E. Rhoderick and R. Williams, Metal-semiconductor contacts (Oxford: Oxford University Press, 1978).

    Google Scholar 

  34. M. Gökçen, Ş. Altındal, M. Karaman, and U. Aydemir, Phys. B Condens. Matter. 406, 4119 (2011).

    Article  Google Scholar 

  35. S.K. Cheungve and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  36. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted as part of the comprehensive research project under contract numbers KU-BAP 01/2017-10, which is supported by Kastamonu University Scientific Research Project (KUBAP), and GU-BAP.05/2018-10, which is supported by Gazi University Scientific Research Project. The authors would like to express their sincere appreciation for the contributions by KUBAP and GU-BAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Çiçek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiçek, O., Tan, S.O., Tecimer, H. et al. Role of Graphene-Doped Organic/Polymer Nanocomposites on the Electronic Properties of Schottky Junction Structures for Photocell Applications. J. Electron. Mater. 47, 7134–7142 (2018). https://doi.org/10.1007/s11664-018-6644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6644-4

Keywords

Navigation