Skip to main content
Log in

Dielectric, Hydrophobic Investigation of ABS/NiFe2O4 Nanocomposites Fabricated by Atomized Spray Assisted and Solution Casted Techniques for Miniaturized Electronic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Engineered nanocomposites with tailored dielectric and hydrophobic characteristics are highly desirable for miniaturized electronics. In this context, we have fabricated acrylonitrile butadiene styrene (ABS)/NiFe2O4 nanocomposites by facile solvent casted and low-volume high-pressure air-atomized (LVHPAA) techniques. The developed nanocomposites consisted of phases such as amorphous ABS, and crystalline nickel–ferrite phases were examined via x-ray diffraction technique. Fourier transform infrared spectroscopic measuration was used to describe ABS polymers, nickel–ferrite oxide constituents, and their interactions. The effect of the space-charge polarization mechanism between particulates and the polymer (101–102 Hz and 10–40 wt.%) was analyzed via impedance spectroscopy, which is further augmented by the Maxwell–Wagner Sillars polarization hypothesis. Also, the subsequent oriental relaxation phenomenon (103–107 Hz) was analyzed. Moreover, at ∼ 107 Hz for all wt.% (10–40 wt.%), the incremental permittivity attributed oriental resonance phenomena was examined. In addition, the developed nanocomposites DC-conductivity attributed micro/nano-capacitors mechanism, and the AC-conductivity realized reorientational hoping mechanisms were scrutinized. The cole–cole representation of a nanocomposite that explained relaxation oriented insulating characteristics was also elucidated. The hydrophobicity of developed composites was characterized via atomic force microscopy (AFM) and contact angle goniometry. The AFM analysis showed a uniform textured surface morphology with the LVHPAA technique, which renders superior hydrophobic characteristics due to the process induced nano-needle generated roughness factor. The investigation results explain the improvement in the dielectric and hydrophobic characteristics of nanocomposites obtained by the LVHPAA technique. Therefore, these ABS/NiFe2O4 nanocomposites could be a possible functional material for miniaturized electronic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Tummala, P. Chahal, and S. Bhattacharya, in IMAPS 35th Nordic Conference, Sweden (1998)

  2. Yang Rao and C.P. Wong, J. Appl. Polym. Sci. 92, 4 (2004).

    Article  Google Scholar 

  3. U.R. Kevin and L.W. Schaper, Integrated Passive Component Technology (Piscataway: IEEE press, 2003), p. 381.

    Google Scholar 

  4. J. Hao, Y. Wei, and J. Mu, RSC Adv. 90, 87433 (2016).

    Article  Google Scholar 

  5. S. Denis, T. Abell, F. Iacopi, and K. Maex, Mater. Today 1, 34 (2004).

    Google Scholar 

  6. C. Feger, Polymeric Materials for Electronics Packaging and Interconnection, ed. J.H. Lupinski and R.S. Moore (Washington: American Chemical Society, 1989), p. 407.

    Google Scholar 

  7. L.J. James and L.A. Hughes, Handbook of polymer coatings for electronics: chemistry, technology and applications, 2nd ed. (New York: Noyes Publications, 1990).

    Google Scholar 

  8. J.W. Balde, Overview of multichip technology, (Electronic Materials Handbook 1 1982).

  9. K. Xie, S.Y. Zhang, J.G. Liu, M.H. He, and S.Y. Yang, J. Polym. Sci., Part A: Polym. Chem. 15, 2581 (2001).

    Article  Google Scholar 

  10. L.A. Ramajo, A.A. Cristóbal, P.M. Botta, J.P. López, M.M. Reboredo, and M.S. Castro, Compos. A Appl. Sci. Manuf. 40, 388 (2009).

    Article  Google Scholar 

  11. D. Kuo, C.C. Hau, TYSu Chang, W.K. Wang, and Y. Lin, J. Eur. Ceram. Soc. 9, 1171 (2001).

    Article  Google Scholar 

  12. D.M. DeLongchamp and P.T. Hammond, Adv. Funct. Mater. 14, 224 (2004).

    Article  Google Scholar 

  13. H. Andreas, Polymer Films with Embedded Metal Nanoparticles (Berlin: Springer, 2013), pp. 1–199.

    Google Scholar 

  14. C.H. Liu and S.S. Fan, Appl. Phys. Lett. 86, 123106 (2005).

    Article  Google Scholar 

  15. J.K. Nelson and Y. Hu, J. Phys. D Appl. Phys. 38, 213 (2005).

    Article  Google Scholar 

  16. W. Haifeng, W. Cao, Q.F. Zhou, K.K. Shung, and Y.H. Huang, Appl. Phys. Lett. 85, 5998 (2004).

    Article  Google Scholar 

  17. D. Vollath, D.V. Szabo, and S. Schlabach, J. Nanopart. Res. 6, 181 (2004).

    Article  Google Scholar 

  18. AYu Barnakov, B.L. Scott, V. Golub, L. Kelly, V. Reddy, and K.L. Stokes, J. Phys. Chem. Solids 65, 1005 (2004).

    Article  Google Scholar 

  19. K. Hilmar, G. Price, N.A. Pearce, M. Alexander, and R.A. Vaia, Nat. Mater. 3, 115 (2004).

    Article  Google Scholar 

  20. J.L. Wilson, P. Poddar, N.A. Frey, H. Srikanth, K. Mohomed, J.P. Harmon, S. Kotha, and J. Wachsmuth, J. Appl. Phys. 95, 1439 (2004).

    Article  Google Scholar 

  21. N. James and K. Pielichowski, Adv. Eng. Mater. 5, 769 (2003).

    Article  Google Scholar 

  22. S. Shouheng, S. Anders, H.F. Hamann, J.U. Thiele, J.E.E. Baglin, T. Thomson, E.E. Fullerton, C.B. Murray, and B.D. Terris, J. Am. Chem. Soc. 124, 2884 (2002).

    Article  Google Scholar 

  23. C. Jhunu, Y. Haik, and C.J. Chen, J. Magn. Magn. Mater. 246, 382 (2002).

    Article  Google Scholar 

  24. M. Morihiko and Y. Miyata, J. Appl. Phys. 91, 9635 (2002).

    Article  Google Scholar 

  25. A.A. Novakova, V. Yu Lanchinskaya, A.V. Volkov, T.S. Gendler, T. Yu Kiseleva, M.A. Moskvina, and S.B. Zezin, J. Magn. Magn. Mater. 258, 354 (2003).

    Article  Google Scholar 

  26. Y. Özlem, M.K. Ram, M. Aldissi, P. Poddar, and S. Hariharan, J. Mater. Chem. 15, 810 (2005).

    Article  Google Scholar 

  27. R.K. Kotnala, S. Ahmad, A.S. Ahmed, J. Shah, and A. Azam, J. Appl. Phys. 112, 054323 (2012).

    Article  Google Scholar 

  28. G.R. Pulliam, J. Appl. Phys. 38, 1120 (1967).

    Article  Google Scholar 

  29. I. Hideaki, T. Uemura, H. Yamaguchi, and S. Naka, J. Mater. Sci. 24, 3549 (1989).

    Article  Google Scholar 

  30. A. Masanori and Y. Tamaura, J. Appl. Phys. 55, 2614 (1984).

    Article  Google Scholar 

  31. W. Chen, W. Zhu, O.K. Tan, and X.F. Chen, J. Appl. Phys. 108, 034101 (2010).

    Article  Google Scholar 

  32. T. Terumitsu, H. Kurisu, M. Matsuura, Y. Shimosato, S. Okada, K. Oshiro, H. Fujimori, and S. Yamamoto, J. Appl. Phys. 99, 08N507 (2006).

    Article  Google Scholar 

  33. A. Raghunathan, I.C. Nlebedim, D.C. Jiles, and J.E. Snyder, J. Appl. Phys. 107, 09A516 (2010).

    Article  Google Scholar 

  34. F.C. Krebs and C. Frederik, Sol. Energy Mater. Sol. Cells 93, 394 (2009).

    Article  Google Scholar 

  35. M. Pedro, C.M. Costa, M. Benelmekki, G. Botelho, and S.L. Mendez, CrysEngComm. 14, 2807 (2012).

    Article  Google Scholar 

  36. U. Siemann, Progr. Colloid Polym. Sci. 130, 1 (2005).

    Google Scholar 

  37. P. Martins, C.M. Costa, G. Botelho, M.S. Lanceros, J.M. Barandiaran, and Gutierrez, J. Mater. Chem. Phys. 8, 698 (2012).

    Article  Google Scholar 

  38. J.R. Dutcher and A.G. Marangoni, Soft Materials Structure and Dynamics (New York: Mercel Dekker, 2005).

    Google Scholar 

  39. T.K. Manish, I.S. Bayer, G.M. Jursich, T.M. Schutzius, and C.M. Megaridis, ACS Appl. Mater. Interfaces. 2, 1114 (2010).

    Article  Google Scholar 

  40. P.M. Gore, S. Zachariah, P. Gupta, and K. Balasubramanian, RSC Adv. 107, 105180 (2016).

    Article  Google Scholar 

  41. B.S. Banerjee and K. Balasubramanian, RSC Adv. 5, 13653 (2015).

    Article  Google Scholar 

  42. K.Y. Byung, V. Doojin, J. Jang, I.N. Seok, S.K. Seok, K.K. Mi, and Y.K. Dong, IEEE J. Quantum Electron. 16, 1838 (2010).

    Article  Google Scholar 

  43. S.D. Sovani, P.E. Sojka, and A.H. Lefebvre, Prog. Energy Combust. Sci. 27, 483 (2001).

    Article  Google Scholar 

  44. P. Vinay and K. Pal, Compos. B Eng. 46, 114 (2017).

    Google Scholar 

  45. O. Anil, K. Singh, A. Chandra, and S.K. Dhawan, ACS Appl. Mater. Interfaces. 2, 927 (2010).

    Article  Google Scholar 

  46. D. Camille, R. Cueff, C. Aumeran, G. Garrait, B.M. Jensen, O. Traoré, and V. Sautou, PLoS ONE 10, e0135632 (2015).

    Article  Google Scholar 

  47. N. Bhardwaj, K.S. Manjula, B. Srinivasulu, and S.C. Subhas, Open J. Org. Polym. Mater. 2, 75 (2012).

    Article  Google Scholar 

  48. K. Rachida and I. Debah, Mater. Sci. Appl. 2, 404 (2011).

    Google Scholar 

  49. B.G. Jayesh and S. Schlick, Polymer 43, 3239 (2002).

    Article  Google Scholar 

  50. R.M. Santos, G.L. Botelho, and A.V. Machado, J. Appl. Polym. Sci. 116, 2005 (2010).

    Google Scholar 

  51. S. Daniela, E. Pouyet, L. Toniolo, M. Cotte, and A. Nevin, Anal. Chim. Acta 843, 59 (2014).

    Article  Google Scholar 

  52. L. Andre, A. Petit, and D. Bogdal, Liquid–liquid PTC in which the inorganic anions or anionic species generated from relatively strong organic acids are located in the aqueous phase and react Microwai ts\n Organic Synthesis, Srumii edition I-dited by A. loupy (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2006), p. 278.

    Google Scholar 

  53. M. Willander, O. Nur, M.Q. Israr, A.B. Abou Hamad, F.G. El Desouky, M.A. Salem, and I.K. Battisha, J. Crystal. Process Technol. 2, 1 (2012).

    Article  Google Scholar 

  54. T. Jitendra and K. Khushbu, Rahangdale, and K. Balasubramanian, RSC. Advances. 6, 69733 (2016).

    Google Scholar 

  55. T. Jitendra, K. Khushbu, R. Rahangdale, B.Kandasubramanian Aepuru, and S. Datar, RSC Adv. 6, 36588 (2016).

    Article  Google Scholar 

  56. A.R. James, C. Prakash, and G. Prasad, J. Phys. D Appl. Phys. 39, 1635 (2006).

    Article  Google Scholar 

  57. W. Rainer, Nanoelectronics and information technology (Hoboken: Wiley, 2012), p. 1031.

    Google Scholar 

  58. M. Karen, M.R. Baklanov, D. Shamiryan, F. Lacopi, S.H. Brongersma, and Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).

    Article  Google Scholar 

  59. W.C. Chun, J.F. Song, H.M. Bao, Q.D. Shen, and C. Zheng, Yang. Adv. Funct. Mater. 18, 1299 (2008).

    Article  Google Scholar 

  60. L. Peter, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Loidl, Phys. Rev. B 66, 052105 (2002).

    Google Scholar 

  61. R.K. Kotnala, S. Ahmad, A.S. Ahmed, J. Shah, and A. Azam, J. Appl. Phys. 112, 054323 (2012).

    Article  Google Scholar 

  62. K. Vasundhara, B.P. Mandal, and A.K. Tyagi, RSC Adv. 5, 8591 (2015).

    Article  Google Scholar 

  63. M.A. Osipov and M.V. Gorkunov, Phys. Rev. E 92, 032501 (2015).

    Article  Google Scholar 

  64. D. Jacques, Thin Solid Films 8, 69 (1971).

    Article  Google Scholar 

  65. S.S.N. Bharadwaja and S.B. Krupanidhi, Thin Solid Films 391, 126 (2001).

    Article  Google Scholar 

  66. L. Yong, X. Huang, Z. Hu, P. Jiang, S. Li, and T. Tanaka, ACS Appl. Mater. Interfaces. 3, 4396 (2011).

    Article  Google Scholar 

  67. Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, and M. Konno, J. Eur. Ceram. Soc. 28, 117 (2008).

    Article  Google Scholar 

  68. N. Sivakumar, A. Narayanasamy, N. Ponpandian, and G. Govindaraj, J. Appl. Phys. 101, 084116 (2007).

    Article  Google Scholar 

  69. T. Hanai and K. Sekine, Colloid Polym. Sci. 264, 888 (1986).

    Article  Google Scholar 

  70. K.K. Patankar, S.S. Joshi, and B.K. Chougule, Phys. Lett. A 346, 337 (2005).

    Article  Google Scholar 

  71. B.K. Mujasam, F.A. Mir, M.S.A. El-sadek, M. Shahabuddin, and N. Ahmed, J. Nanopart. Res. 15, 2067 (2013).

    Article  Google Scholar 

  72. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, and R.S. Katiyar, Phys. Rev. B 77, 014111 (2008).

    Article  Google Scholar 

  73. S.V. Drappel, G. Liebermann, R.P. Veregin, T.E. Enright, S.M. Silence, M.J. Duggan, and P.J. MacLeod, (inventors; Xerox Corporation.). United States patent US: 6,391, 509 (2002).

  74. S.C. Derek and A.R. West, J. Appl. Phys. 66, 3850 (1989).

    Article  Google Scholar 

  75. C. Cabuz, T. R. Ohnstein, and E. I. Cabuz, United States patent: US 5,822,170, (1998).

  76. J.W. Jack, Smart Mater. Struct. 10, 1115 (2001).

    Article  Google Scholar 

  77. I. Hidenori, F. Arai, and T. Fukuda, IEEE/ASME Trans. Mechatron. 1, 68 (1996).

    Article  Google Scholar 

  78. H. Homma, T. Kuroyagi, K. Izumi, C.L. Mirley, J. Ronzello, and S.A. Boggs, IEEE Trans. Dielectr. Electr. Insul. 6, 370 (1999).

    Article  Google Scholar 

  79. H. Zheng, Z. Yuanfu, Y. Suge, F. Long, D. Shougang, C. Shougang, and Y. Chunqing, J. Semicond. 36, 115002 (2015).

    Article  Google Scholar 

  80. R. Mancke, IEEE Trans. Compon. Hybrids Manuf. Technol. 4, 492 (1981).

    Article  Google Scholar 

  81. T.S. Chow, J. Phys. Condens. Matter 10, L445 (1998).

    Article  Google Scholar 

  82. P. Gupta and K. Balasubramanian, Mater. Focus 6, 556 (2016).

    Article  Google Scholar 

  83. B.N. Sahoo, K. Balasubramanian, and M. Sucheendran, J. Phys. Chem. C 119, 14201 (2015).

    Article  Google Scholar 

  84. K. Neha and K. Balasubramanian, RSC Adv. 5, 4376 (2015).

    Article  Google Scholar 

  85. P.J.V. Zwol, G. Palasantzas, and J.T.M.D. Hosson, Phys. Rev. E 78, 031606 (2008).

    Article  Google Scholar 

  86. P.M. Gore and K. Balasubramanian, J. Mater. Chem. A 6, 7457 (2018).

    Article  Google Scholar 

  87. P. Gupta and K. Balasubramanian, ACS Appl. Mater. Interfaces 9, 19102 (2017).

    Article  Google Scholar 

  88. R. Yadav, S.Zachariah Rohit, and K. Balasubramanian, Adv. Sci. Eng. Med. 8, 181 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Dr. Hina Gokhale, Vice Chancellor, DRDO-DIAT (DU) for motivation and support. Authors would like to thank Dr. Surendra K. Pal, Former Vice Chancellor, DIAT (DU), for the encouragement and support. The authors would also like to acknowledge Dr. S. R. Vadera, Director of Defence Laboratory, Jodhpur for continuous help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magisetty, R., Shukla, A. & Kandasubramanian, B. Dielectric, Hydrophobic Investigation of ABS/NiFe2O4 Nanocomposites Fabricated by Atomized Spray Assisted and Solution Casted Techniques for Miniaturized Electronic Applications. J. Electron. Mater. 47, 5640–5656 (2018). https://doi.org/10.1007/s11664-018-6452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6452-x

Keywords

Navigation