Skip to main content
Log in

Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of ultrathin crystalline silicon (c-Si) wafers in solar cells necessitates a highly effective light absorber to compensate for poor light absorption. One route to overcoming this problem is to use a periodic array of Si nanodisks on ultrathin c-Si. In the present manuscript, we numerically investigate the effects of the geometrical parameters of the Si nanodisks, including disk diameter (D) and length (L), on the structural and optical properties, using atomistic tight-binding theory. These computations confirm that the electronic structure and optical properties are sensitive to the structural parameters. As the disk diameter and length increase, the single-electron energies decrease, and the single-hole energies increase. These calculations also reveal that, because of the quantum confinement effect, the optical band gaps gradually decrease independently of the increasing disk diameter and length. The optical spectra can be tuned across the visible region by varying the disk diameter and length, which is a useful feature for optimizing light absorption in solar cell applications. As the disk diameter and length increased, the optical intensities also increased; however, the atomistic electron–hole interactions and ground electron–hole wave function overlap progressively decreased. The ground electron–hole wave function overlap, Stokes shift, and fine structure splitting decreased as the disk diameter and length were increased. Thus, Si nanodisks with a large diameter and length might be a suitable candidate source of entangled photons. The Si nanodisks in this study also show promise for applications to solar cells based on ultrathin c-Si wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).

    Article  Google Scholar 

  2. S.M. Nie and S.R. Emery, Science 275, 1102 (1997).

    Article  Google Scholar 

  3. P.J. Tarcha, J. DeSaja-Gonzalez, S. Rodriguez-Llorente, and R. Aroca, Appl. Spectrosc. 53, 43 (1999).

    Article  Google Scholar 

  4. N. Engheta, Science 317, 1698 (2007).

    Article  Google Scholar 

  5. I. Kim, D.S. Jeong, W.S. Lee, W.M. Kim, T.-S. Lee, D.-K. Lee, J.-H. Song, J.-K. Kim, and K.-S. Lee, Opt. Express 22, A1431 (2014).

    Article  Google Scholar 

  6. M.F. Budiman, W. Hu, M. Igarashi, R. Tsukamoto, T. Isoda, K.M. Itoh, I. Yamashita, A. Murayama, Y. Okada, and S. Samukawa, Nanotechnology 23, 065302 (2012).

    Article  Google Scholar 

  7. T. Kiba, Y. Mizushima, M. Igarashi, S. Samukawa, and A. Murayama, Nanoscale Res. Lett. 7, 587 (2012).

    Article  Google Scholar 

  8. T. Kiba, Y. Mizushima, M. Igarashi, C.-H. Huang, S. Samukawa, and A. Murayama, Appl. Phys. Lett. 100, 053117 (2012).

    Article  Google Scholar 

  9. S.-C. Yang, K. Richter, and W.-J. Fischer, Appl. Phys. Lett. 106, 081112 (2015).

    Article  Google Scholar 

  10. T. Shibanuma, P. Albella, and S.A. Maier, Nanoscale 8, 14184 (2016).

    Article  Google Scholar 

  11. J. Valenta, B. Bruhn, and J. Linnros, Nano Lett. 11, 3003 (2011).

    Article  Google Scholar 

  12. Q. Wu, X.-H. Wang, T.A. Niehaus, and R.-Q. Zhang, J. Phys. Chem. C 118, 20070 (2014).

    Article  Google Scholar 

  13. Y. Wang, R. Zhang, T. Frauenheim, and T.A. Niehaus, J. Phys. Chem. C 113, 12935 (2009).

    Article  Google Scholar 

  14. P. Vogl, H.P. Hjalmarson, and J.D. Dow, J. Phys. Chem. Solids 44, 365 (1983).

    Article  Google Scholar 

  15. M. Korkusinski and P. Hawrylak, Phys. Rev. B 87, 115310 (2013).

    Article  Google Scholar 

  16. M. Zieliński, J. Phys. Condens. Matter 25, 465301 (2013).

    Article  Google Scholar 

  17. F.A. Reboredo, A. Franceschetti, and A. Zunger, Phys. Rev. B 61, 13073 (2000).

    Article  Google Scholar 

  18. E.L. de Oliveira, E.L. Albuquerque, J.S. de Sousa, G.A. Farias, and F.M. Peeters, J. Phys. Chem. C 116, 4399 (2012).

    Article  Google Scholar 

  19. W. Sukkabot, Superlattices Microstruct. 91, 208 (2016).

    Article  Google Scholar 

  20. W. Sukkabot, Mater. Sci. Semicond. Process. 47, 57 (2016).

    Article  Google Scholar 

  21. W. Sukkabot, Superlattices Microstruct. 95, 71 (2016).

    Article  Google Scholar 

  22. A.P. Alivisatos, Science 271, 933 (1996).

    Article  Google Scholar 

  23. S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck, Phys. Rev. B 69, 045316 (2004).

    Article  Google Scholar 

  24. M. Korkusinski, O. Voznyy, and P. Hawrylak, Phys. Rev. B 82, 245304 (2010).

    Article  Google Scholar 

  25. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).

    Article  Google Scholar 

  26. S.V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 93, 126406 (2004).

    Article  Google Scholar 

  27. J.L. Janssen, Y. Gillet, S. Poncé, A. Martin, M. Torrent, and X. Gonze, Phys. Rev. B 93, 205147 (2016).

    Article  Google Scholar 

  28. J.C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138, A225 (1965).

    Article  Google Scholar 

  29. J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  Google Scholar 

  30. W. Sheng, S.-J. Cheng, and P. Hawrylak, Phys. Rev. B 035316, 71 (2005).

    Google Scholar 

  31. S. Lee, L. Jonsson, J.W. Wilkins, G.W. Bryant, and G. Klimeck, Phys. Rev. B 63, 195318 (2001).

    Article  Google Scholar 

  32. A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, Phys. Rev. B 1819, 60 (1999).

    Google Scholar 

  33. N. Zonias, P. Lagoudakis, and C.-K. Skylaris, J. Phys.: Condens. Matter 22, 025303 (2010).

    Google Scholar 

  34. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).

    Article  Google Scholar 

  35. S. Brovelli, R.D. Schaller, S.A. Crooker, F. García-Santamaría, Y. Chen, R. Viswanatha, J.A. Hollingsworth, H. Htoon, and V.I. Klimov, Nat. Commun. 2, 1 (2011).

    Google Scholar 

  36. A.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).

    Article  Google Scholar 

  37. L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, PRL 101, 157405 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support from the Thailand Research Fund Grants (TRG58880072) and Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand. We thank Andrew Jackson, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worasak Sukkabot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukkabot, W. Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks. J. Electron. Mater. 47, 4892–4901 (2018). https://doi.org/10.1007/s11664-018-6382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6382-7

Keywords

Navigation