Skip to main content

Advertisement

Log in

Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10 Ω. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.T. Liu and D. Long, IEEE Conference Proceedings, vol. 14 (1978).

  2. G. Sebald, E. Lefeuvre, D. Guyomar, and I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 55, 538 (2008).

    Google Scholar 

  3. C.R. Bowen, J. Taylor, E.L. Boulbar, D. Zabek, and V.Y. Topolov, Mater. Lett. 138, 243 (2015).

    Article  Google Scholar 

  4. R.W. Whatmore, Ferroelectrics 118, 241 (1991).

    Article  Google Scholar 

  5. R.W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986).

    Article  Google Scholar 

  6. Y. Yang, Y. Zhou, J.M. Wu, and Z.L. Wang, ACS Nano 6, 8456 (2012).

    Article  Google Scholar 

  7. L. Peng, L. Hu, and X. Fang, Adv. Funct. Mater. 24, 2591 (2014).

    Article  Google Scholar 

  8. S. Kumar, UltraSolar Technology, Inc. US Patent, 2011/0232734 A1, 2011.

  9. Q. Zhang, A. Agbossou, Z. Feng, and M. Cosnier, Sens. Actuat. A 168, 335 (2011).

    Article  Google Scholar 

  10. A. van der Ziel, J. Appl. Phys. 45, 4128 (1974).

    Article  Google Scholar 

  11. L. Battista, L. Mecozzi, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, Appl. Energy 136, 357 (2014).

    Article  Google Scholar 

  12. Q. Zhang, A. Agbossou, Z. Feng, and M. Cosnier, Sens. Actuators A Phys. 168, 335 (2011).

    Article  Google Scholar 

  13. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, and R. Vaish, Energy Environ. Sci. 7, 3836 (2014).

    Article  Google Scholar 

  14. D. Zabek, K. Seunarine, C. Spacie, C.R. Bowen, and A.C.S. App, Mater. Interfaces 9, 9161 (2017).

    Article  Google Scholar 

  15. D. Zabek, J. Taylor, C.R. Bowen, and I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 63, 1681 (2016).

    Article  Google Scholar 

  16. D. Zabek, C.R. Bowen, and J. Taylor, Workshop (ISAF/ISIF/PFM), Joint IEEE International Symposium on the IEEE, vol. 83 (2015).

  17. C.C. Hsiao and A.S. Siao, Sensors 13, 12113 (2013).

    Article  Google Scholar 

  18. P. Chaudhary and P. Azad, IEEE International Conference Computing Communication Automation (ICCCA2017) (2017).

  19. Khushboo and P. Azad, IEEE International Conference Computing Communication Automation (ICCCA2017) (2017).

  20. K.S. Srikanth, V.P. Singh, and R. Vaish, J. Eur. Ceram. Soc. 37, 3943 (2017).

    Article  Google Scholar 

  21. Y. Yang, W. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, and Z.L. Wang, Nano Lett. 12, 2833 (2012).

    Article  Google Scholar 

  22. X. Hao, Y. Zhao, and Q. Zhang, J. Phys. Chem. C 119, 18877 (2015).

    Article  Google Scholar 

  23. J. Naciri, D.K. Shenoy, P. Keller, S. Gray, K. Crandall, and R. Shashidhar, Chem. Mater. 14, 5134 (2002).

    Article  Google Scholar 

  24. T. Sivakumar, H.Y. Chang, J. Baek, and P.S. Halasyamani, Chem. Mater. 19, 4710 (2007).

    Article  Google Scholar 

  25. B.N. Sahoo and B. Kandasubramanian, Mater. Chem. Phys. 148, 134 (2014).

    Article  Google Scholar 

  26. J. Li, R. Kang, X. Tang, H. She, Y. Yang, and F. Zha, Nanoscale 8, 7638 (2016).

    Article  Google Scholar 

  27. J. Wei, M. Cai, F. Zhou, and W. Liu, Tribol. Lett. 53, 521 (2014).

    Article  Google Scholar 

  28. H. Liu, T. Ye, and C. Mao, Angew. Chem. Int. Ed. 46, 6473 (2007).

    Article  Google Scholar 

  29. B. Zhang, D. Wang, B. Yu, F. Zhou, and W. Liu, RSC Advances 4, 2586 (2014).

    Article  Google Scholar 

  30. C.J. Liang, J.D. Liao, A.J. Li, C. Chen, H.Y. Lin, X.J. Wang, and Y.H. Xu, Fuel 128, 422 (2014).

    Article  Google Scholar 

  31. M. Bottini and T. Mustelin, Nat. Nanotechnol. 2, 599 (2007).

    Article  Google Scholar 

  32. M. Kakunuri and C.S. Sharma, Electrochim. Acta 180, 353–359 (2015).

    Article  Google Scholar 

  33. B. Zhang, D. Wang, B. Yu, F. Zhou, and W. Liu, RSC Adv. 4, 2586–2589 (2013).

    Article  Google Scholar 

  34. Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, Energy Environ. Sci. (2013). http://doi.org/10.1039/C4EE01983K.

    Google Scholar 

  35. S.E. Park and T.R. Shrout, J. Appl. Phys. 82, 1804 (1997).

    Article  Google Scholar 

  36. F.Z.E. Fatnani, D. Guyomar, M.H. Mazroui, F. Belhora, and Y. Boughaleb, Opt. Mater. 56, 22 (2016).

    Article  Google Scholar 

  37. D. Guyomar, F. Belhora, M.H. Mazroui, Y. Boughaleb, and A. Hajjaji, Eur. Phy. J. Plus 131, 252 (2016).

    Article  Google Scholar 

  38. P. Chen, F. Huang, and S. Yun, Carbon 41, 2093 (2003).

    Article  Google Scholar 

  39. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon 43, 1731 (2005).

    Article  Google Scholar 

  40. Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Chem. Mater. 2, 557 (1990).

    Article  Google Scholar 

  41. D.N. Shooto and E.D. Dikio, Int. J. Electrochem. Sci. 6, 1269 (2011).

    Google Scholar 

  42. N.P. Ivleva, A. Messerer, X. Yang, R. Niessner, and U. Poschl, Environ. Sci. Technol. 41, 3702 (2007).

    Article  Google Scholar 

  43. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  Google Scholar 

  44. B.N. Sahoo and B. Kandasubramanian, RSC Adv. 4, 11331 (2014).

    Article  Google Scholar 

  45. D. Zang, M. Yan, S. Ge, L. Ge, and J. Yu, Analyst 138, 2704 (2013).

    Article  Google Scholar 

  46. V.S. Escribano, E.F. López, J.M. Gallardo-Amores, H. MartínezCdel, C. Pistarino, and M. Panizza, et’al., Combust. Flame 153, 97 (2008).

    Article  Google Scholar 

  47. Y. Nie and T. Hübert, Compos. Part A App. Sci. 43, 1357 (2012).

    Article  Google Scholar 

  48. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, and E.V. Buzaneva, et’al., Chem. Mater. 11, 771 (1999).

    Article  Google Scholar 

  49. R.R. Pradhananga, L. Adhikari, R.G. Shrestha, M.P. Adhikari, R. Rajbhandari, K. Ariga, and L.K. Shrestha, J. Carbon Res. 3, 12 (2017).

    Article  Google Scholar 

  50. P. Azad and R. Vaish, Eur. Phy. J. Plus 132, 253 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Azad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, P., Singh, V.P. & Vaish, R. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion. J. Electron. Mater. 47, 4721–4730 (2018). https://doi.org/10.1007/s11664-018-6357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6357-8

Keywords

Navigation