Skip to main content
Log in

First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The mechanical properties of the CoSb3/Ti interface play a critical role in the application of thermoelectric devices. To understand the failure mechanism of the CoSb3(001)/Ti(01\( \bar{1} \)0) interface, we investigated its response during tensile deformations by first-principles calculations. By comparison with the result between the perfect interface and the interface after atomic migration, we find that the atomic migration at the interface has an obvious influence on the mechanical properties. The tensile tests indicate the ideal tensile stress of the CoSb3/Ti interface after atomic migration decreases by about 8.1% as compared to that of the perfect one. The failure mechanism of the perfect CoSb3/Ti interface is different from that of the migrated CoSb3/Ti interface. For the perfect CoSb3/Ti interface, the breakage of the Co-Sb bond leads to the failure of the system. For the CoSb3/Ti interface after atomic migration, the breakage of the Sb-Sb bond leads to the failure of the system. This is mainly because the new ionic Ti-Sb bonds make the electrons redistributed and weaken the stiffness of the Co-Sb bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. Z.H. Ge, L.D. Zhao, D. Wu, X. Liu, B.P. Zhang, J.F. Li, and J. He, Mater. Today 19, 227 (2016).

    Article  Google Scholar 

  3. X. Zhang and L.D. Zhao, J. Materiomics 1, 92 (2015).

    Article  Google Scholar 

  4. D. Champier, Energy Convers. Manag. 140, 167 (2017).

    Article  Google Scholar 

  5. L.D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014).

    Article  Google Scholar 

  6. J. He, M.G. Kanatzidis, and V.P. Dravid, Mater. Today 16, 166 (2013).

    Article  Google Scholar 

  7. Y. Tang, Y. Qiu, L. Xi, X. Shi, W. Zhang, L. Chen, S.M. Tseng, S. Chen, and G.J. Snyder, Energy Environ. Sci. 7, 812 (2014).

    Article  Google Scholar 

  8. G. Rogl and P. Rogl, Curr. Opin. Green Sustain. Chem. 4, 50 (2017).

    Article  Google Scholar 

  9. K.H. Bae, S.M. Choi, K.H. Kim, H.S. Choi, W.S. Seo, I.H. Kim, S. Lee, and H.J. Hwang, J. Electron. Mater. 44, 2124 (2015).

    Article  Google Scholar 

  10. D. Zhao, H. Geng, and L. Chen, Int. J. Appl. Ceram. Technol. 9, 733 (2012).

    Article  Google Scholar 

  11. D. Zhao, M. Zuo, Z. Wang, X. Teng, and H. Geng, Appl. Surf. Sci. 305, 86 (2014).

    Article  Google Scholar 

  12. D. Zhao, X. Li, L. He, W. Jiang, and L. Chen, J. Alloys Compd. 477, 425 (2009).

    Article  Google Scholar 

  13. D. Zhao, H. Geng, and X. Teng, J. Alloys Compd. 517, 198 (2012).

    Article  Google Scholar 

  14. L. Shi, X. Huang, M. Gu, and L. Chen, Surf. Coat. Technol. 285, 312 (2016).

    Article  Google Scholar 

  15. G. Li, S. Hao, U. Aydemir, M. Wood, W.A. Goddard, P. Zhai, Q. Zhang, and G.J. Snyder, ACS Appl. Mater. Interfaces 8, 31968 (2016).

    Article  Google Scholar 

  16. L. Hui, L. Yuping, Z. Caili, D. Nan, L. Hongfei, D. Hongbiao, and H. Peide, Comput. Mater. Sci. 82, 367 (2014).

    Article  Google Scholar 

  17. H.Z. Zhang, L.M. Liu, and S.Q. Wang, Comput. Mater. Sci. 38, 800 (2007).

    Article  Google Scholar 

  18. X. Guo and F. Shang, Comput. Mater. Sci. 50, 1711 (2011).

    Article  Google Scholar 

  19. D. Yin, Y. Yang, X. Peng, Y. Qin, and Z. Wang, Ceram. Int. 40, 14453 (2014).

    Article  Google Scholar 

  20. J. Li, S. Xu, J. Zhang, L. Liu, Q. Liu, W. She, and Z. Fu, Chin. Phys. B 26, 047101 (2017).

    Article  Google Scholar 

  21. W. She, Q. Liu, H. Mei, P. Zhai, J. Li, and L. Liu, J. Electron. Mater. 46, 2929 (2017).

    Article  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  23. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  24. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  25. J. Zhou, D. Causon, C. Mingham, and D. Ingram, J. Comput. Phys. 168, 1 (2001).

    Article  Google Scholar 

  26. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  27. G. Li, Q. An, W. Li, W.A. Goddard, P. Zhai, Q. Zhang, and G.J. Snyder, Chem. Mater. 27, 6329 (2015).

    Article  Google Scholar 

  28. M. Gu, X. Xia, X. Li, X. Huang, and L. Chen, J. Alloys Compd. 610, 665 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, W., Liu, Q., Mei, H. et al. First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface. J. Electron. Mater. 47, 3210–3217 (2018). https://doi.org/10.1007/s11664-017-5930-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5930-x

Keywords

Navigation