Skip to main content
Log in

On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to interpret the electrical characteristics of fabricated Au/ZnO/n-Si structures as a function of frequency and voltage well, their capacitance–voltage (CV) and conductance–voltage (G/ωV) measurements were carried out in a wide range of frequencies (0.7 kHz–2 MHz) and voltages (± 6 V) by 50 mV steps at room temperature. Both the CV and G/ωV plots have reverse, depletion, and accumulation regions such as a metal–insulator/oxide semiconductor (MIS or MOS) structures. The values of doped-donor atoms (N D), Fermi energy level (E F), barrier height (ΦB), and series resistance (R s) of the structure were obtained as a function of frequency and voltage. While the value of N D decreases with increasing frequency almost as exponentially, the value of depletion width (W D) increases. The values of C and G/ω increase with decreasing frequency because the surface states (N ss) are able to follow the alternating current (AC) signal, resulting in excess capacitance (C ex) and conductance (G ex/ω), which depends on their relaxation time and the frequency of the AC signal. The voltage-dependent profiles of N ss were obtained from both the high–low frequency capacitance and Hill-Colleman methods. The other important parameter R s of the structure was also obtained from the Nicollian and Brews methods as a function of voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ersöz, I. Yücedag, Y. Azizian-Kalandaragh, I. Orak, and S. Altındal, IEEE Trans. Electron Dev. 63, 2948 (2016).

    Article  Google Scholar 

  2. S. Demirezen, A. Kaya, Ö. Vural, and Ş. Altındal, Mater. Sci. Semicond. Process. 33, 140 (2015).

    Article  Google Scholar 

  3. Y.Ş. Asar, T. Asar, Ş. Altındal, and S. Özçelik, Phil. Mag. 95, 2885 (2015).

    Article  Google Scholar 

  4. S.A. Yerişkin, M. Balbasi, and A. Tataroglu, J. Appl. Poly. Sci. 133 (2016). doi:10.1002/app.43827

  5. M.M. Bulbul, S. Altindal, F. Parlakturk, and A. Tataroglu, Surf. Interface. Anal., 43, 1561 (2011).

  6. H. Tecimer, H. Uslu, Z.A. Alahmed, F. Yakuphanoğlu, and Ş. Altındal, Compos. Part B: Eng. 57, 25 (2014).

    Article  Google Scholar 

  7. Y.S. Altindal, H.I. Unal, and S. Bekir, J. Appl. Poly. Sci. 120, 390 (2011).

    Article  Google Scholar 

  8. İ. Taşçıoğlu, M. Soylu, ş. Altındal, A.A. Al-Ghamdi, and F. Yakuphanoglu, J. Alloys Compd. 541, 462 (2012).

    Article  Google Scholar 

  9. M.K. Hudait and S.B. Krupanidhi, Solid-State Electron 44, 1089 (2000).

    Article  Google Scholar 

  10. M. Afsal, C. Wang, L. Chu, H. Ouyang, and L. Chen, J. Mater. Chem. 22, 8420 (2012).

    Article  Google Scholar 

  11. A. Singh, Solid State Electron. 28, 223 (1985).

    Article  Google Scholar 

  12. M.M. Bülbül, S. Zeyrek, Ş. Altındal, and H. Yüzer, Microelectron. Eng. 83, 577 (2006).

    Article  Google Scholar 

  13. P. Cova and A. Singh, J. Appl. Phys. 82, 5217 (1997).

    Article  Google Scholar 

  14. D. Sands, K.M. Brunson, and M.H. Najaran, Semicond. Sci. Technol. 7, 1091 (1992).

    Article  Google Scholar 

  15. J. Osvald and E. Burıan, Solid- State Electronics 42, 191 (1998).

    Article  Google Scholar 

  16. S. Bengi and M.M. Bülbül, Cur Appl. Phys. 13, 1819 (2013).

    Article  Google Scholar 

  17. E.H. Nicollian, Mos (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley- Interscience, 2002).

    Google Scholar 

  18. M. Depas, R.L. Van Meirhaeghe, W.H. Laflere, and F. Cardon, Semicond. Sci. Technol. 7, 1476 (1992).

    Article  Google Scholar 

  19. S. Ashok, J.M. Borrego, and R.J. Gutmann, Solid State Electron. 22, 621 (1979).

    Article  Google Scholar 

  20. W. Divigalpitiya, Sol. Energy Mater. 18, 253 (1989).

    Article  Google Scholar 

  21. H.M. Xiong, Y. Xu, O.G. Ren, and Y.Y. Xia, J. Am. Chem. Soc. 130, 7522 (2008).

    Article  Google Scholar 

  22. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).

    Article  Google Scholar 

  23. Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang, and Y. Zhang, Adv. Function. Mater. 14, 943 (2004).

    Article  Google Scholar 

  24. J.C. Johnson, H.Q. Yan, P.D. Yang, and R.J. Saykally, J. Phys. Chem. B 107, 8816 (2003).

    Article  Google Scholar 

  25. X.D. Wang, C.J. Summers, and Z.L. Wang, Nano Lett. 4, 423 (2004).

    Article  Google Scholar 

  26. S. Bilge Ocak, A.B. Selçuk, G. Aras, and E. Orhan, Mater. Sci. Semicond. Process. 38, 249 (2015).

    Article  Google Scholar 

  27. E.H. Nicollian and J.R. Brews, Solid-State Electron. 27, 953 (1984).

    Article  Google Scholar 

  28. S.A. Yeriskin, H. Ibrahim Unal, and B. Sari, J. Appl. Poly. Sci. 120, 390 (2011).

    Article  Google Scholar 

  29. I.M. Afandiyeva, I. Dökme, Ş. Altındal, M.M. Bülbül, and A. Tataroğlu, Microelectron. Eng. 85, 247 (2008).

    Article  Google Scholar 

  30. A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, and A. Aytimur, Ceram. Inter. 42, 3322 (2016).

    Article  Google Scholar 

  31. E. Arslan, S. Bütün, Y. Safak, and E. Özbay, J. Electron. Mater. 39, 2681 (2010).

    Article  Google Scholar 

  32. P.S. Ho, E.S. Yang, H.L. Evans, and X. Wu, Phys. Rev. Lett. 60, 177 (1986).

    Article  Google Scholar 

  33. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, and M. Pinto, Phys. Rev. Lett. 60, 53 (1988).

    Article  Google Scholar 

  34. P. Chattopadhyay and B. Raychaudhuri, Solid State Electron. 1992, 35 (1992).

    Google Scholar 

  35. W.A. Hill and C.C. Coleman, Solid State Electron. 23, 915 (1980).

    Article  Google Scholar 

  36. M. Sharma and S.K. Tripathi, Mater. Sci. Semicond. Process. 41, 155 (2016).

    Article  Google Scholar 

  37. N. Shiwakoti, A. Bobby, K. Asokan, and B. Antony, Mater. Sci. Semicond. Process. 42, 378 (2016).

    Article  Google Scholar 

  38. H.G. Çetinkaya, S. Alialy, Ş. Altındal, A. Kaya, and İ. Uslu, J. Mater. Sci.: Mater. Electron. 26, 3186 (2015).

    Google Scholar 

  39. M. Asghar, K. Mahmood, F. Malik, and M.A. Hasan, 6th vacuum and surface sciences conference of Asia and Australia (VASSCAA-6). J. Phys. Conf. Ser. 439, 012031 (2013).

  40. R. Singh, P. Sharma, Md A. Khan, V. Garg, V. Awasthi, A. Kranti, S. Mukherjee, J. Phys. D: Appl. Phys. 49, 445305 (2016).

  41. L. Rajan, IEEE Trans. Nanotechnol. 15, 201 (2016).

Download references

Acknowledgement

ARTEMIZ Research and Development (R&D) Company supported this work. ARTEMIZ is an establishment, which is financially supported by Small and Medium Enterprises Development Organization (KOSGEB), Republic of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsoun Nikravan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikravan, A., Badali, Y., Altındal, Ş. et al. On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage. J. Electron. Mater. 46, 5728–5736 (2017). https://doi.org/10.1007/s11664-017-5613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5613-7

Keywords

Navigation