Skip to main content

Advertisement

Log in

Effects of Composition on Dielectric Properties of (Ba,Ca)(Zr,Ti)O3 Ceramics for Energy Storage Capacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ba1−x Ca x Zr0.2Ti0.8O3 (x = 0, 0.05, 0.10) and Ba0.95Ca0.05Zr y Ti1−y O3 (y = 0.20, 0.25, 0.30) ceramics have been prepared by a citrate method and their structure, energy storage density, ferroelectric phase transition behavior, and dielectric nonlinearity investigated. All specimens showed cubic perovskite structure at room temperature. The energy storage density of the specimens at given electric field of 120 kV/cm was similar at around 0.40 J/cm3. In contrast, the degree of relaxor behavior of the specimens varied with changing A- or B-site composition. Compared with increasing calcium content at A-site, increasing zirconium content at B-site more readily induced pronounced relaxor behavior. The dielectric constant of the specimens under bias electric field dropped to a common level at high field. Fitting the nonlinear dielectric response under bias field using a multipolarization mechanism model resolved the contributions of various polarization mechanisms. It turned out that the extrinsic contribution of polar nanoregions faded out within the low-field range, with intrinsic lattice phonon polarization governing the overall dielectric response at high field. Moreover, characteristic parameters of the polarization mechanisms were determined from the fitting. Based on these fitting results, the differing composition dependence of the energy storage density and relaxor behavior were explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hennings, A. Schnell, and G. Simon, J. Am. Ceram. Soc. 65, 539 (1982).

    Article  Google Scholar 

  2. P.W. Rehrig, S.E. Park, S. Trolier-McKinstry, G.L. Messing, B. Jones, and T.R. Shrout, J. Appl. Phys. 86, 1657 (1999).

    Article  Google Scholar 

  3. Z. Yu, R. Guo, and A.S. Bhalla, J. Appl. Phys. 88, 410 (2000).

    Article  Google Scholar 

  4. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 1489 (2002).

    Article  Google Scholar 

  5. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, Appl. Phys. Lett. 81, 1285 (2002).

    Article  Google Scholar 

  6. F. Zimmermann, M. Voigts, W. Menesklou, and E. Ivers-Tiffée, J. Eur. Ceram. Soc. 24, 1729 (2004).

    Article  Google Scholar 

  7. L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, and J. Ma, Prog. Mater. Sci. 55, 840 (2010).

    Article  Google Scholar 

  8. T. Maiti, R. Guo, and A.S. Bhalla, J. Appl. Phys. 100, 114109 (2006).

    Article  Google Scholar 

  9. A. Dixit, S.B. Majumder, R.S. Katiyar, and A.S. Bhalla, J. Mater. Sci. 41, 87 (2006).

    Article  Google Scholar 

  10. Q. Xu, D. Zhan, H.X. Liu, W. Chen, D.P. Huang, and F. Zhang, Acta Mater. 61, 4481 (2013).

    Article  Google Scholar 

  11. S. Ke, H. Fan, H. Huang, H.L.W. Chan, and S. Yu, J. Appl. Phys. 104, 034108 (2008).

    Article  Google Scholar 

  12. A.A. Bokov, M. Maglione, and Z.G. Ye, J. Phys. Condens. Matter 19, 092001 (2007).

    Article  Google Scholar 

  13. B.W. Ricketts, G. Triani, and A.D. Hilton, J. Mater. Sci. Mater. Electron. 11, 513 (2000).

    Article  Google Scholar 

  14. V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, and R.S. Katiyar, J. Phys. D Appl. Phys. 44, 395403 (2011).

    Article  Google Scholar 

  15. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, and R.S. Katiyar, J. Mater. Sci. 48, 2151 (2013).

    Article  Google Scholar 

  16. T. Wu, Y. Pu, and K. Chen, Ceram. Int. 39, 6787 (2013).

    Article  Google Scholar 

  17. Q. Xu, D. Zhan, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Alloys Compd. 558, 77 (2013).

    Article  Google Scholar 

  18. N.H. Fletcher, A.D. Hilton, and B.W. Ricketts, J. Phys. D Appl. Phys. 29, 253 (1996).

    Article  Google Scholar 

  19. C. Ang and Z. Yu, Phys. Rev. B 69, 174109 (2004).

    Article  Google Scholar 

  20. X.G. Tang, X.X. Wang, K.H. Chew, and H.L.W. Chan, Solid State Commun. 136, 89 (2005).

    Article  Google Scholar 

  21. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Alloys Compd. 682, 594 (2016).

    Article  Google Scholar 

  22. X.F. Zhang, Q. Xu, H.X. Liu, W. Chen, M. Chen, and B.H. Kim, Phys. B 406, 1571 (2011).

    Article  Google Scholar 

  23. J. Rodríguez-Carvajal, Phys. B 192, 55 (1993).

    Article  Google Scholar 

  24. R.D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  25. M. Deluca, C.A. Vasilescu, A.C. Ianculescu, D.C. Berger, C.E. Ciomaga, L.P. Curecheriu, L. Stoleriu, A. Gajovic, L. Mitoseriu, and C. Galassi, J. Eur. Ceram. Soc. 32, 3551 (2012).

    Article  Google Scholar 

  26. R. Farhi, M.E. Marssi, A. Simon, and J. Ravez, Eur. Phys. J. B 9, 599 (1999).

    Article  Google Scholar 

  27. V. Ramana, A. Mahajan, M.P.F. Graça, S.K. Mendiratta, J.M. Monteiro, and M.A. Valente, Mater. Res. Bull. 48, 4395 (2013).

    Article  Google Scholar 

  28. Y. Pu, M. Yao, H. Liu, and T. Frömling, J. Eur. Ceram. Soc. 36, 2461 (2016).

    Article  Google Scholar 

  29. J. Zhang, J. Zhai, X. Chou, J. Shao, X. Lu, and X. Yao, Acta Mater. 57, 4491 (2009).

    Article  Google Scholar 

  30. R.A. Malik, A. Hussain, A. Zaman, A. Maqbool, J.U. Rahman, T.K. Song, W.J. Kim, and M.H. Kim, RSC Adv. 5, 96953 (2015).

    Article  Google Scholar 

  31. G. Viola, T. Saunders, X. Wei, K.B. Chong, H. Luo, M.J. Reece, and H. Yan, J. Adv. Dielect. 3, 1350007 (2013).

    Article  Google Scholar 

  32. X. Hao, J. Adv. Dielect. 3, 1330001 (2013).

    Article  Google Scholar 

  33. M.A. Hannan, M.M. Hoque, A. Mohamed, and A. Ayob, Renew. Sust. Energ. Rev. 69, 771 (2017).

    Article  Google Scholar 

  34. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002).

    Article  Google Scholar 

  35. D. Viehland, S.J. Jang, L.E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).

    Article  Google Scholar 

  36. A.E. Glazounov and A.K. Tagantsev, Appl. Phys. Lett. 73, 856 (1998).

    Article  Google Scholar 

  37. X.G. Tang and H.L.W. Chan, J. Appl. Phys. 97, 034109 (2005).

    Article  Google Scholar 

  38. K.M. Johnson, J. Appl. Phys. 33, 2826 (1962).

    Article  Google Scholar 

  39. J.W. Liou and B.S. Chiou, J. Am. Ceram. Soc. 80, 3093 (1997).

    Article  Google Scholar 

  40. T. Tsurumi, J. Li, T. Hoshina, H. Kakemoto, M. Nakada, and J. Akedo, Appl. Phys. Lett. 91, 182905 (2007).

    Article  Google Scholar 

  41. D. Viehland, S.J. Jang, L.E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).

    Article  Google Scholar 

  42. Z.R. Liu, B.L. Gu, and X.W. Zhang, Phys. Rev. B 62, 1 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51072146 and 51372181), the Ministry of Education (No. 20100143110006), and the Hubei Provincial Science and Technology Department (No. 2011CDA057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, D., Xu, Q., Huang, DP. et al. Effects of Composition on Dielectric Properties of (Ba,Ca)(Zr,Ti)O3 Ceramics for Energy Storage Capacitors. J. Electron. Mater. 46, 4503–4511 (2017). https://doi.org/10.1007/s11664-017-5435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5435-7

Keywords

Navigation