Skip to main content
Log in

Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Three-component 40TeO2-(60-x)V2O5-xSb2O3 glasses with 0 ≤ x ≤ 10 (in mol.%) were obtained by the rapid melt-quenching method. These glasses were studied with respect to some mechanical properties with the goal of obtaining information about their structure. The Vickers hardness test was employed to obtain Vickers micro-hardness (H V) at two different loads, which was within the range of 13.187–17.557 GPa for a typical 0.1 HV (0.9807 N) load. In addition, theoretical micro-hardness (H) was investigated and compared with experimental H V, showing the elevating trend with increase of Sb2O3 content, as for H V. Furthermore, differential scanning calorimetry (DSC) was employed within the range of 150–500°C at heating rates of φ = 3 K/min, 6 K/min, 9 K/min, 10 K/min, and 13 K/min. In this work, thermal stability (T s = T cr − T x) and glass forming tendency (K gl) were measured and reported for these glasses to determine the relationship between the chemical composition and the thermal stability, in order to interpret the structure of glass. Generally, from the ascertained outputs [analysis of mechanical data, titration study, the values of reduced fraction of vanadium ions (C V) and oxygen molar volume (\( V_{\text{O}}^{*} \))], it was found that the micro-hardness had an increasing trend with increasing the Sb2O3 content. Among the studied glasses, the sample with x = 8 had a higher average micro-hardness value, the highest average thermal stability and glass forming tendency with respect to the other samples, which makes it a useful material (owning very good resistance against thermal attacks) for device manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. El-Mallawany, Phys. Stat. Sol. (a) 177, 439 (2000).

    Article  Google Scholar 

  2. A. Abdel-Kadar, R. El-Mallawany, and M.M. Elkholy, Appl. Phys. 73, 71 (1993).

    Article  Google Scholar 

  3. R. El-Mallawani, A. Abousehly, and E. Yousef, J. Mater. Sci. Lett. 19, 409 (2000).

    Article  Google Scholar 

  4. A. El-Adawy and R. El-Mallawani, J. Mater. Sci. Lett. 15, 2065 (1996).

    Google Scholar 

  5. D. Souri, J. Non-Cryst. Solids 356, 2181 (2010).

    Article  Google Scholar 

  6. D. Souri and K. Shomalian, J. Non-Cryst. Solids 355, 1597 (2009).

    Article  Google Scholar 

  7. S.A. Salehizadeh and D. Souri, J. Phys. Chem. Solids 72, 1381 (2011).

    Article  Google Scholar 

  8. D. Souri, M. Mohammadi, and H. Zaliani, Electron. Mater. Lett. 10, 1103 (2014).

    Article  Google Scholar 

  9. D. Souri, P. Azizpour, and H. Zaliani, J. Electron. Mater. 43, 3672 (2014).

    Article  Google Scholar 

  10. R. El-Mallawany, J. Mater. Res. 7, 224 (1992).

    Article  Google Scholar 

  11. R. El-Mallawany, M. Sidkey, A. Khafagy, and H. Afifi, Mater. Chem. Phys. 37, 295 (1994).

    Article  Google Scholar 

  12. R. El-Mallawany and A.Abd. El-Moneim, Phys. Stat. Sol. (a) 166, 829 (1998).

    Article  Google Scholar 

  13. H.M.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, and M. El-Sharbiny, J. Am. Ceram. Soc. 85, 2655 (2002).

    Article  Google Scholar 

  14. R. El-Mallawany, J. Mater. Res. 18, 402 (2003).

    Article  Google Scholar 

  15. R. El-Mallawany, A. Abdel-Kader, M. El-Hawary, and N. El-Khoshkhany, J. Mater. Sci. 45, 871 (2010).

    Article  Google Scholar 

  16. E.F. Lambson, G.A. Saunders, B. Bridge, and R.A. Mallawany, J. Non-Cryst. Solids 69, 117 (1984).

    Article  Google Scholar 

  17. V. Rajendran, N. Palanivelu, B.K. Chaudhuri, and K. Goswami, J. Non-Cryst. Solids 320, 195 (2003).

    Article  Google Scholar 

  18. Y. Dimitriev, V. Dimitriev, and M. Arunaudov, J. Mater. Sci. 18, 1353 (1983).

    Article  Google Scholar 

  19. N. Palanivelu and V. Rajendran, Phys. Stat. Sol. (a) 203, 2347 (2006).

    Article  Google Scholar 

  20. D. Souri, J. Mater. Sci. 46, 6998 (2011).

    Article  Google Scholar 

  21. D. Souri and M. Elahi, Czech. J. Phys. 56, 419 (2006).

  22. R. Muncaster and S. Parke, J. Non-Cryst. Solids 24, 399 (1977).

    Article  Google Scholar 

  23. S. Jayaseelan, P. Muralidharan, M. Venkateswarlu, and N. Satyanarayana, Mater. Sci. Eng. B 118, 136 (2005).

    Article  Google Scholar 

  24. G. Turky and M. Dawy, Mater. Chem. Phys. 77, 48 (2002).

    Article  Google Scholar 

  25. S.R. Elliott, Physics of Amorphous Materials, 2nd ed. (Essex: Longman Scientific & Technical, 1990).

    Google Scholar 

  26. G.W. Scherer, Relaxation in Glasses and Composites (NewYork: Wiley, 1986).

    Google Scholar 

  27. I. Avramov, G. Guinev, and A.C.M. Rodrigues, J. Non-Cryst. Solids 271, 12 (2000).

    Article  Google Scholar 

  28. A. Inoue, T. Zhang, and T. Masumoto, J. Non-Cryst. Solids 156–158, 473 (1993).

    Article  Google Scholar 

  29. A. Hruby, Czech J. Phys. 22, 1187 (1972).

    Article  Google Scholar 

  30. M.A. Paykani, M.N. Ahmadabadi, and A. Seiffodini, Intermetallics 46, 118 (2014).

    Article  Google Scholar 

  31. D. Souri, J. Mater. Sci. 47, 625 (2012).

    Article  Google Scholar 

  32. D. Souri, Eur. Phys. J. B 84, 47 (2011).

    Article  Google Scholar 

  33. D. Souri, Measurement 44, 2049 (2011).

    Article  Google Scholar 

  34. K. Yukimitu, R.C. Oliveira, E.B. Araujo, J.C.S. Moraes, and L.H. Avnci, Thermochim. Acta 426, 157 (2005).

    Article  Google Scholar 

  35. D. Souri, Phys. B 456, 185 (2015).

    Article  Google Scholar 

  36. H. Mori, H. Matsuno, and H. Sakata, J. Non-Cryst. Solids 276, 78 (2000).

    Article  Google Scholar 

  37. H. Sakata, M. Amano, and T. Yag, J. Non-Cryst. Solids 194, 198 (1996).

    Article  Google Scholar 

  38. H.H. Qiu, M. Kundo, and H. Sakata, Mater. Chem. Phys. 51, 233 (1997).

  39. V. Keryvin, Acta Mater. 55, 2565 (2007).

    Article  Google Scholar 

  40. G.S. Yu, J.G. Lin, W. Li, and S.F. Li, J. Alloys Compd. 482, 366 (2009).

    Article  Google Scholar 

  41. C. Tang, Y. Li, and K. Zeng, Mat. Sci. Eng A 384, 215 (2004).

    Article  Google Scholar 

  42. M.A. Sidkey, A.Abd. El-Moneim, and L.Abd. El-Latif, Mater. Chem. Phys. 61, 103 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, D., Torkashvand, Z. Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness. J. Electron. Mater. 46, 2158–2163 (2017). https://doi.org/10.1007/s11664-016-5151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5151-8

Keywords

Navigation