Skip to main content
Log in

Influence of Capping Ligand and Synthesis Method on Structure and Morphology of Aqueous Phase Synthesized CuInSe2 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm−1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection–Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis–differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Lesnyak, N. Gaponik, and A. Eychmuller, Chem. Soc. Rev. 42, 2905 (2013).

    Article  Google Scholar 

  2. A.M. Smith and S. Nie, Acc. Chem. Res. 43, 190 (2010).

    Article  Google Scholar 

  3. L. Etger, Materials 6, 445 (2013).

    Article  Google Scholar 

  4. J.H. Bang and P.V. Kamat, ACS Nano 3, 1467 (2009).

    Article  Google Scholar 

  5. N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, and H. Talaat, Mater. Sci. Semicond. Process. 26, 238 (2014).

    Article  Google Scholar 

  6. C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, and Z.L. Wang, Nano Lett. 12, 3302 (2012).

    Article  Google Scholar 

  7. J.Y. Chang, L.F. Su, C.C. Chang, and J.M. Lin, Chem. Commun. 48, 4848 (2012).

    Article  Google Scholar 

  8. W. Li, Z. Pan, and X. Zhong, J. Mater. Chem. A 3, 1649 (2015).

    Article  Google Scholar 

  9. Y. Zhao and C. Burda, Energy Environ. Sci. 5, 5564 (2012).

    Article  Google Scholar 

  10. X.Q. Chen, Z. Li, Y. Bai, Q. Sun, L.Z. Wang, and S.X. Dou, Chem. Eur. J. 21, 1055 (2015).

    Article  Google Scholar 

  11. P.M. Allen and M.G. Bawendi, J. Am. Chem. Soc. 130, 9240 (2008).

    Article  Google Scholar 

  12. W.N. Shafarman, R.W. Birkmire, D.A. Fardig, B.E. McCandless, A. Mondal, J.E. Phillips, and R.D. Varrin Jr, Sol. Cells 30, 61 (1991).

    Article  Google Scholar 

  13. L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.O. Velthaus, and H.W. Schock, Appl. Phys. Lett. 62, 597 (1993).

    Article  Google Scholar 

  14. J.L. Shay, S. Wagner, and H.M. Kasper, Appl. Phys. Lett. 27, 89 (1975).

    Article  Google Scholar 

  15. L.L. Kazmerski and G.A. Sanborn, J. Appl. Phys. 48, 3178 (1977).

    Article  Google Scholar 

  16. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  17. S.J. Ahn, C.W. Kim, J.H. Yun, J. Gwak, S. Jeong, B.H. Ryu, and K. Yoon, J. Phys. Chem. C 114, 8108 (2010).

    Article  Google Scholar 

  18. J. Xu, C.Y. Luan, Y.B. Tang, X. Chen, J.A. Zapien, W.J. Zhang, H.L. Kwong, X.M. Meng, S.T. Lee, and C.S. Lee, ACS Nano 4, 6064 (2010).

    Article  Google Scholar 

  19. S.E. Wark, C.H. Hsia, Z. Luo, and D.H. Son, J. Mater. Chem. 21, 11618 (2011).

    Article  Google Scholar 

  20. Y. Luo, Colloid J. 71, 375 (2009).

    Article  Google Scholar 

  21. H. Chen, S.M. Yu, D.W. Shin, and J.B. Yoo, Nanoscale Res. Lett. 5, 217 (2010).

    Article  Google Scholar 

  22. S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, and A.F. Hepp, Chem. Mater. 15, 3142 (2003).

    Article  Google Scholar 

  23. H. Peng, D.T. Schoen, S. Meister, X.F. Zhang, and Y. Cui, J. Am. Chem. Soc. 129, 34 (2007).

    Article  Google Scholar 

  24. J.P. Park, S.K. Kim, J.Y. Park, K.M. Ok, and I.I.-W. Shim, Bull. Korean Chem. Soc. 30, 853 (2009).

    Article  Google Scholar 

  25. H. Liu, Z. Jin, W. Wang, and J. Li, Cryst Eng Comm 13, 7198 (2011).

    Article  Google Scholar 

  26. Y. Min, G.D. Moon, J. Park, M. Park, and U. Jeong, Nanotechnology 22, 465604 (2011).

    Article  Google Scholar 

  27. B. Koo, R.N. Patel, and B.A. Korgel, J. Am. Chem. Soc. 131, 3134 (2009).

    Article  Google Scholar 

  28. M. Singh, J. Jiu, T. Sugahara, and K. Suganuma, Thin Solid Films 565, 11 (2014).

    Article  Google Scholar 

  29. J. Chang and E.R. Waclawik, RSC Adv. 4, 23505 (2014).

    Article  Google Scholar 

  30. D. Aldakov, A. Lefrançois, and P. Reiss, J. Mater. Chem. C 1, 3756 (2013).

    Article  Google Scholar 

  31. D. Wang, W. Zheng, C. Hao, Q. Peng, and Y. Li, Chem. Commun., 22, 2556 (2008).

  32. J. Embden, A.S.R. Chesman, and J.J. Jasieniak, Chem. Mater. 27, 2246 (2015).

    Article  Google Scholar 

  33. G.W. Kim, F.P.G. Arquer, Y.J. Yoon, X. Lan, M. Liu, O. Voznyy, Z. Yang, F. Fan, P. Kanjanaboos, S. Hoogland, J.Y. Kim, and E.H. Sargent, Nano Lett. 15, 7691 (2015).

    Article  Google Scholar 

  34. J.V. Williams, C.N. Adams, N.A. Kotov, and P.E. Savage, Ind. Eng. Chem. Res. 46, 4358 (2007).

    Article  Google Scholar 

  35. H. Zang, L. Wang, H. Xiong, L. Hu, B. Yang, and W. Li, Adv. Mater. 15, 1712 (2003).

    Article  Google Scholar 

  36. J. Xing, T.P. Vinod, and J. Kim, J. Nanosci. Nanotechnol. 12, 5892 (2012).

    Google Scholar 

  37. S. Liu, H. Zhang, Y. Qiao, and X. Su, RSC Adv. 2, 819 (2012).

    Article  Google Scholar 

  38. X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, J. Mater. Chem. 21, 15903 (2011).

    Article  Google Scholar 

  39. J. Zhu, A. Li, and Q. Yan, J. Nanosci. Nanotechnol. 10, 7519 (2010).

    Article  Google Scholar 

  40. J. Ramkumar, S. Ananthakumar, and S. Moorthy Babu, Sol. Energy 106, 177–183 (2014).

    Article  Google Scholar 

  41. P.W. Yu, J. Appl. Phys. 47, 677 (1976).

    Article  Google Scholar 

  42. N. Katsuhiro, T. Omata, and S. Otsuka-Yao-Matsuo, J. Phys. Chem. C 113, 3455 (2009).

    Google Scholar 

  43. J. Alvarez-Garcia, B. Barcones, A. Perez-Rodriguez, A. Romano-Rodriguez, J.R. Morante, A. Janotti, S.H. Wei, and R. Scheer, Phys. Rev. B 71, 054303 (2005).

    Article  Google Scholar 

  44. M. Ahmadi, S.S. Pramana, L. Xi, C. Boothroyd, Y.M. Lam, and S. Mhaisalkar, J. Phys. Chem. C 116, 8202 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Department of Science and Technology (DST), Govt. of India, for providing financial support under Solar Energy Research Initiative program (Project number: DST/TMC/SERI/FR/90). J. Ram Kumar and S. Ananthakumar sincerely thank the Ministry of New and Renewable Energy (MNRE), Govt. of India, for providing fellowships under the National Renewable Energy Fellowship (NREF) scheme␣for the doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ram Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram Kumar, J., Ananthakumar, S. & Moorthy Babu, S. Influence of Capping Ligand and Synthesis Method on Structure and Morphology of Aqueous Phase Synthesized CuInSe2 Nanoparticles. J. Electron. Mater. 46, 296–305 (2017). https://doi.org/10.1007/s11664-016-4906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4906-6

Keywords

Navigation