Skip to main content
Log in

Visible Light-Induced Photocatalytic and Antibacterial Activity of Li-Doped Bi0.5Na0.45K0.5TiO3–BaTiO3 Ferroelectric Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The visible light-active ferroelectric photocatalyst Bi0.5Na0.45Li0.05K0.5TiO3–BaTiO3 (BNKLBT) was synthesized by a solid-state method and its photocatalytic, photoelectrochemical, and antibacterial properties were investigated. In a chronoamperometric study the current density under visible light was 30 μA/cm2, which is three times more than that observed under dark conditions. The compound’s visible light photocatalytic activity was investigated for degradation of an organic dye (methyl orange) and an estrogenic pollutant (estriol).The kinetic rate constants calculated for photocatalytic degradation of methyl orange and estriol were 0.007 and 0.056 min−1, respectively. High photocatalytic and photoelectrochemical activity was a result of effective separation of photo-generated charge carriers, because of the ferroelectric nature of the catalyst. The effect of different charge-trapping agents on photocatalytic degradation was studied to investigate the effect of active species and the degradation pathway. Antimicrobial activity was investigated for Escherichia coli and Aspergillus flavus. The anti-bacterial action of BNKLBT was compared with that of the commercial antibiotic kanamycin (k30).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Li, V. Puddu, H.K. Tsang, A. Gora, and B. Toepfer, Appl. Catal. B Environ. 99, 388 (2010).

    Article  Google Scholar 

  2. I.K. Konstantinou and T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004).

    Article  Google Scholar 

  3. O.K. Dalrymple, D.H. Yeh, and M.A. Trotz, J. Chem. Technol. Biotechnol. 82, 121 (2007).

    Article  Google Scholar 

  4. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J.M. Herrmann, Appl. Catal. B Environ. 39, 75 (2002).

    Article  Google Scholar 

  5. C. Wei, W.Y. Lin, Z. Zainal, N.E. Williams, K. Zhu, A.P. Kruzic, R.L. Smith, and K. Rajeshwar, Environ. Sci. Technol. 28, 934 (1994).

    Article  Google Scholar 

  6. A.Y. Tong, R. Braund, D.S. Warren, and B.M. Peake, Cent. Eur. J. Chem. 10, 989 (2012).

    Article  Google Scholar 

  7. J.C. Yu, W. Ho, J. Lin, H. Yip, and P.K. Wong, Environ. Sci. Technol. 37, 2296 (2003).

    Article  Google Scholar 

  8. G. Fu, P.S. Vary, and C.T. Lin, J. Phys. Chem. B 109, 8889 (2005).

    Article  Google Scholar 

  9. J. Shi and L. Guo, Prog. Nat. Sci. Mater. Int. 22, 592 (2012).

    Article  Google Scholar 

  10. S. Yang, J. Seidel, S. Byrnes, P. Shafer, C.H. Yang, M. Rossell, P. Yu, Y.H. Chu, J. Scott, and J. Ager, Nat. Nanotechnol. 5, 143 (2010).

    Article  Google Scholar 

  11. H. van Damme and W.K. Hall, J. Catal. 69, 371 (1981).

    Article  Google Scholar 

  12. B. Yang, Y. Yuan, P. Sharma, S. Poddar, R. Korlacki, S. Ducharme, A. Gruverman, R. Saraf, and J. Huang, Adv. Mater. 24, 1455 (2012).

    Article  Google Scholar 

  13. M. Stock and S. Dunn, J. Phys. Chem. C 116, 20854 (2012).

    Article  Google Scholar 

  14. T. Choi, S. Lee, Y. Choi, V. Kiryukhin, and S.W. Cheong, Science 324, 63 (2009).

    Article  Google Scholar 

  15. Y. Inoue, K. Sato, and K. Sato, J. Chem.Soc. Faraday T1 85(7), 1765 (1989).

  16. J.W. Bennett, I. Grinberg, and A.M. Rappe, J. Am. Ceram. Soc. 130, 17409 (2008).

    Google Scholar 

  17. H. He, J. Yin, Y. Li, Y. Zhang, H. Qiu, J. Xu, T. Xu, and C. Wang, Appl. Catal. B Environ. 156, 35 (2014).

    Article  Google Scholar 

  18. L. Ge, C. Han, and J. Liu, Appl. Catal. B Environ. 108, 100 (2011).

    Article  Google Scholar 

  19. A. Kerfah, K. Taïbi, S. Omeiri, and M. Trari, Sol. Energy 85, 443 (2011).

    Article  Google Scholar 

  20. Y. Inoue, O. Hayashi, and K. Sato, J. Chem. Soc. Faraday T. 86, 2277 (1990).

    Article  Google Scholar 

  21. R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, J. Phys. Chem. C 114, 21390 (2010).

    Article  Google Scholar 

  22. H. Yan, D. Xiao, P. Yu, J. Zhu, D. Lin, and G. Li, Mater. Des. 26, 474 (2005).

    Article  Google Scholar 

  23. N.D. Quan, V.N. Hung, N.V. Quyet, H.V. Chung, and D.D. Dung, AIP Adv. 4, 7122 (2014).

    Article  Google Scholar 

  24. S. Pigeot-Rémy, F. Simonet, E. Errazuriz-Cerda, J. Lazzaroni, D. Atlan, and C. Guillard, Appl. Catal. B Environ. 104, 390 (2011).

    Article  Google Scholar 

  25. Y.J. Dai, S. Zhang, T.R. Shrout, and X.W. Zhang, J. Am. Ceram. Soc. 93, 1108 (2010).

    Article  Google Scholar 

  26. B. Parija, T. Badapanda, V. Senthil, S. Rout, and S. Panigrahi, Bull. Mater. Sci. 35, 197 (2012).

    Article  Google Scholar 

  27. S. Lee, R.D. Levi, W. Qu, S.C. Lee, and C.A. Randall, J. Appl. Phys. 107, 023523 (2010).

    Article  Google Scholar 

  28. I. Levin, E. Cockayne, V. Krayzman, J.C. Woicik, S. Lee, and C.A. Randall, Phys. Rev. B 83, 094122 (2011).

    Article  Google Scholar 

  29. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.M. Herrmann, Appl. Catal. B Environ. 31, 145 (2001).

    Article  Google Scholar 

  30. H.H. Mohamed and D.W. Bahnemann, Appl. Catal. B Environ. 128, 91 (2012).

    Article  Google Scholar 

  31. Z. Wang, L. Yin, Z. Chen, G. Zhou, and H. Shi, J. Nanomater. 2014 (2014). doi:10.1155/2014/150150.

  32. Y. Park, Y. Na, D. Pradhan, B.K. Min, and Y. Sohn, Cryst. Eng. Comm. 16, 3155 (2014).

    Article  Google Scholar 

  33. H. Li, Y. Cui, W. Hong, and B. Xu, Chem. Eng. J. 228, 1110 (2013).

    Article  Google Scholar 

  34. L. Ye, J. Chen, L. Tian, J. Liu, T. Peng, K. Deng, and L. Zan, Appl. Catal. B Environ. 130, 1 (2013).

    Google Scholar 

  35. T. Chen, Y. Zheng, J.M. Lin, and G. Chen, J. Am. Soc. Mass Spectrom. 19, 997 (2008).

    Article  Google Scholar 

  36. C. Baiocchi, M.C. Brussino, E. Pramauro, A.B. Prevot, L. Palmisano, and G. Marcì, Int. J.␣Mass Spectrom. 214, 247 (2002).

    Article  Google Scholar 

  37. H.S. Kushwaha, G. Parmesh, R. Vaish, K.B.R. Varma, and J. Non-Cryst, Solids 408, 13 (2015).

    Google Scholar 

  38. D. Jain, H.K. Daima, S. Kachhwaha, and S. Kothari, Dig. J. Nanomater. Bios. 4, 557 (2009).

    Google Scholar 

  39. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, and J.M. Liu, Adv. Mater. 19, 2889 (2007).

    Article  Google Scholar 

  40. Q.J. Ruan and W.-D. Zhang, J. Phys. Chem. C 113, 4168 (2009).

    Article  Google Scholar 

  41. H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Z. Wang, and M. Jiang, J. Solid State Chem. 182, 2274 (2009).

    Article  Google Scholar 

  42. Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, X. Dong, and A.C.S. App, ACS Appl. Mater. Interfaces 5, 7079 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Rahul Vaish thanks Indian National Science Academy, India, for a research Grant under the INSA Young Scientist Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, H., Halder, A., Jain, D. et al. Visible Light-Induced Photocatalytic and Antibacterial Activity of Li-Doped Bi0.5Na0.45K0.5TiO3–BaTiO3 Ferroelectric Ceramics. J. Electron. Mater. 44, 4334–4342 (2015). https://doi.org/10.1007/s11664-015-4007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4007-y

Key words

Navigation