Skip to main content
Log in

Electrical Characteristics of Hybrid-Organic Memory Devices Based on Au Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the fabrication and characterization of hybrid-organic memory devices based on gold (Au) nanoparticles that utilize metal–insulator–semiconductor structure. Au nanoparticles were produced by sputtering and inert-gas condensation inside an ultrahigh-vacuum compatible system. The nanoparticles were self-assembled on a silicon dioxide (SiO2)/silicon (Si) substrate, then coated with a poly(methyl methacrylate) (PMMA) insulating layer. Aluminum (Al) electrodes were deposited by thermal evaporation on the Si substrate and the PMMA layer to create a capacitor. The nanoparticles worked as charge storage elements, while the PMMA is the capacitor insulator. The capacitance–voltage (CV) characteristics of the fabricated devices showed a clockwise hysteresis with a memory window of 3.4 V, indicative of electron injection from the top Al electrode through the PMMA layer into Au nanoparticles. Charge retention was measured at the stress voltage, demonstrating that the devices retain 94% of the charge stored after 3 h of continuous testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.T. Lin, P. Zingway, J.R. Chen, G.W. Hwang, J.F. Fan, and Y.J. Chan, Electron Device Lett. 28, 951 (2007).

    Article  Google Scholar 

  2. D. Tsoukalas, Philos. Trans. R. Soc. A 367, 4169 (2009).

    Article  Google Scholar 

  3. M.F. Mabrook, Y. Yun, C. Pearson, D.A. Zeze, and M.C. Petty, Appl. Phys. Lett. 94, 173302 (2009).

    Article  Google Scholar 

  4. S.J. Kim, Y.S. Park, S.H. Lyu, and J.S. Lee, Appl. Phys. Lett. 96, 033302 (2010).

    Article  Google Scholar 

  5. H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).

    Article  Google Scholar 

  6. D. Gupta, Directions 8, 111 (2007).

    Google Scholar 

  7. A. Kathalingam and J.K Rhee, J. Electron. Mater. 41, 2162 (2012).

    Article  Google Scholar 

  8. M.N. Awais and K.H. Choi, J. Electron. Mater. 42, 1202 (2013).

    Article  Google Scholar 

  9. J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002).

    Article  Google Scholar 

  10. B. Park, K.J. Im, K. Cho, and S. Kim, Org. Electron. 9, 878 (2008).

    Article  Google Scholar 

  11. K. Ya-Chin, T.J. King, and C. Hu, IEEE Trans. Electron Devices 48, 696 (2001).

    Article  Google Scholar 

  12. C.H. Lee, J. Meteer, V. Narayanan, and E.C. Kan, J. Electron. Mater. 34, 1 (2005).

    Article  Google Scholar 

  13. J. Ouyang, Nano Reviews 1, doi: 10.3402/nano.v1i0.5118 (2010).

  14. Ch Sargentis, K. Giannakopoulos, A. Travlos, P. Normand, and D. Tsamakis, Superlattices Microstruct. 44, 483 (2008).

    Article  Google Scholar 

  15. Z. Liu, C. Lee, V. Narayanan, G. Pei, and E.C. Kan, IEEE Trans. Electron Devices 49, 1606 (2002).

    Article  Google Scholar 

  16. J.S. Lee, Gold Bull. 43, 189 (2010).

    Article  Google Scholar 

  17. C. Sargentis, K. Giannakopoulos, A. Travlos, D. Tsamakis, and G. Krokidis, International Semiconductor Device Research Symposium, p. 342 (2005).

  18. M.F. Mabrooka, A.S. Jombert, S.E. Machin, C. Pearson, D. Kolb, K.S. Coleman, D.A. Zeze, and M.C. Petty, Mater. Sci. Eng. B 159–160, 14 (2009).

    Article  Google Scholar 

  19. S. William, M.F. Mabrook, and D.M. Taylor, Appl. Phys. Lett. 95, 093309 (2009).

    Article  Google Scholar 

  20. W.L. Leong, P.S. Lee, S.G. Mhaisalkar, T.P. Chen, and A. Dodabalapur, Appl. Phys. Lett. 90, 042906 (2007).

    Article  Google Scholar 

  21. A. Tataroglu and S. Altindal, Microelectron. Eng. 85, 2256 (2008).

    Article  Google Scholar 

  22. S. Kolliopoulou, P. Dimitrakis, P. Normand, H.L. Zhang, N. Cant, S.D. Evans, S. Paul, C. Pearson, A. Molloy, M.C. Petty, and D. Tsoukalas, J. Appl. Phys. 94, 5234 (2003).

    Article  Google Scholar 

  23. A. Prakash, J. Ouyang, J.L. Lin, and Y. Yang, J. Appl. Phys. 100, 054309 (2006).

    Article  Google Scholar 

  24. A.I. Ayesh, N. Qamhieh, H. Ghamlouche, S. Thaker, and M. El-Shaer, J. Appl. Phys. 107, 034317 (2010).

    Article  Google Scholar 

  25. J. Schmelzer, S.A. Brown, A. Wurl, M. Hyslop, and R.J. Blaikie, Phys. Rev. Lett. 88, 226802 (2002).

    Article  Google Scholar 

  26. A.I. Ayesh, J.G. Partridge, R. Reichel, A.D.F. Dunbar, and S.A. Brown, Proceedings of the 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, (Sidney: IEEE Press, 2004), p. 327.

  27. J.G. Partridge, R. Reichel, A. Ayesh, T. Matthewson, D.M.A. Mackenzie, and S.A. Brown, Solid State Electronics Research Advances, ed. S.B. Kobadze. (New York: Nova Science, 2009), p. 321, ISBN-10: 1600218512.

  28. A.I. Ayesh, S.A. Brown, A. Awasthi, S.C. Hendy, P.Y. Convers, and K. Nichol, Phys. Rev. B 81, 195422 (2010).

    Article  Google Scholar 

  29. Oxfordshire, Nanogen-50 User Manual, Mantis Deposition Ltd. (2009).

  30. A.I. Ayesh, S. Thaker, N. Qamhieh, and H. Ghamlouche, J. Nanopart. Res. 13, 1125 (2011).

    Article  Google Scholar 

  31. M. Gracia-Pinilla, E. Martínez, G.S. Vidaurri, and E. Pérez-Tijerina. Nanoscale Res. Lett. 5, 180 (2010).

    Article  Google Scholar 

  32. M.F. Mabrook, D. Kolb, C. Pearson, D.A. Zeze, and M.C. Petty, Adv. Sci. Technol. 54, 474 (2008).

    Article  Google Scholar 

  33. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).

    Google Scholar 

  34. A. Sleiman, M.C. Rosamond, M.A. Martin, A. Ayesh, A. Al Ghaferi, A.J. Gallant, M.F. Mabrook, and D.A. Zeze, Appl. Phys. Lett. 100, 023302 (2012).

    Article  Google Scholar 

  35. M. Alba-Martin, T. Firmager, J. Atherton, M.C. Rosamond, D. Ashall, A. Al-Ghaferi, A. Ayesh, A.J. Gallant, M.F. Mabrook, M.C. Petty, and D.A. Zeze, J. Phys. D 45, 295401 (2012).

    Article  Google Scholar 

  36. Y. Yun, C. Pearson, and M.C. Petty, J. Appl. Phys. 105, 034508 (2009).

    Article  Google Scholar 

  37. M.F. Mabrook, C. Pearson, D. Kolb, D.A. Zeze, and M.C. Petty, Org. Electron. 9, 816 (2008).

    Article  Google Scholar 

  38. A.I. Ayesh, S. Qadri, V.J. Baboo, M.Y. Haik, and Y. Haik, Synth. Met. 183, 24 (2013).

    Article  Google Scholar 

  39. A. Sleiman, M.C. Rosamond, R.R. Nejm, A. Ayesh, A. Al-Ghaferi, D.A. Zeze, and M.F. Mabrook, J. Appl. Phys. 112, 024509 (2012).

    Article  Google Scholar 

  40. M.Y. Haik, A.I. Ayesh, T. Abdulrehman, and Y. Haik, Mater. Lett. 124, 67 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the British Council for its support through the PMI2 Connect program, Grant No. RC GS 249. This work was performed while the corresponding author was working at the Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad I. Ayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejm, R.R., Ayesh, A.I., Zeze, D.A. et al. Electrical Characteristics of Hybrid-Organic Memory Devices Based on Au Nanoparticles. J. Electron. Mater. 44, 2835–2841 (2015). https://doi.org/10.1007/s11664-015-3692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3692-x

Keywords

Navigation