Skip to main content
Log in

Silver Nanoparticles in Comparison with Ionic Liquid and rGO as Gate Dopant for Paper–Pencil-Based Flexible Field-Effect Transistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanoparticle-based flexible field-effect transistors (FETs) containing carbon nanotubes (CNTs) and silicon nanowires (SiNWs) have attracted tremendous attention, since their interesting device performance can be utilized for integrated nanoscale electronics. However, use of CNTs and SiNWs on polymer substrates poses serious limitations in terms of their fabrication procedure, repeatability, and biodegradability. In this article, we report for the first time the fabrication and characteristics of solution-processed FETs on a paper substrate doped with easily prepared silver nanoparticles (AgNPs). To compare the FET performance, we fabricated two other FETs on paper containing ionic liquid (IL, 1-butyl-3-methylimidazolium octyl sulfate) and reduced graphene oxide (rGO) as dopants. We observe that the AgNP-based dopant generated good FET characteristics in terms of linear transconductance variations and higher carrier concentration values, showing negligible changes after bending and aging. In comparison with the AgNP-FET, the rGO- and IL-based dopants yielded high carrier mobilities, but the rGO-based FET is more susceptible to aging and bending. The excellent linearity of the I DSV G curve found for the AgNP-FET ensures its applicability for devices requiring linear transfer characteristics such as linear amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

PS:

Polystyrene

PDMS:

Polydimethylsiloxane

AgNP:

Silver nanoparticle

rGO:

Reduced graphene oxide

FET:

Field-effect transistor

IL:

Ionic liquid

EDL:

Electric double layer

PVP:

Polyvinylpyrrolidone

FESEM:

Field-emission scanning electron microscopy

G:

Gate contact

D:

Drain contact

S:

Source contact

References

  1. A. Matsumoto and Y. Miyahara, Nanoscale 5, 10702 (2013).

    Article  Google Scholar 

  2. N. Van, J. Lee, J. Sohn, S. Cha, D. Whong, J. Kim, and D. Kang, Nanoscale 6, 5479 (2014).

    Article  Google Scholar 

  3. G. Larrieu and X. Han, Nanoscale 5, 2437 (2013).

    Article  Google Scholar 

  4. Y. Xu, P.R. Berger, J. Cho, and R.B. Timmons, J. Electron. Mater. 33, 1240 (2004).

    Article  Google Scholar 

  5. X. Wang, H. Xu, J. Min, L. Pen, and J. Xiu, Nanoscale 5, 2811 (2013).

    Article  Google Scholar 

  6. Y. Sakuma, M. Shima, Y. Awano, Y. Sugiyama, T. Fatatsugi, N. Yokoyama, K. Uchida, N. Miura, and T. Sekiguchi, J.␣Electron. Mater. 28, 466 (1999).

    Article  Google Scholar 

  7. J.S. Meena, M. Chu, R. Singh, C. Wu, U. Chand, H. You, P. Liu, H.D. Shieh, and F. Ko, RSC Adv. 4, 18493 (2014).

    Article  Google Scholar 

  8. J. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).

    Article  Google Scholar 

  9. S. Shi, X. Xie, R. Qu, S. Chen, L. Wang, M. Wang, H. Wang, X. Li, and G. Yu, RSC Adv. 3, 18944 (2013).

    Article  Google Scholar 

  10. B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. Lieber, Science 329, 830 (2010).

    Article  Google Scholar 

  11. J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, and L. Hu, ACS Nano 7, 2106 (2013).

    Article  Google Scholar 

  12. F. Yakuphanoglu and W. Farooq, Synth. Met. 161, 379 (2011).

    Article  Google Scholar 

  13. B. Liu, Y. Zou, S. Ye, Y. He, and K. Zhou, RSC Adv. 1, 424 (2012).

    Article  Google Scholar 

  14. J. Schön and C. Kloc, Appl. Phys. Lett. 78, 3538 (2001).

    Article  Google Scholar 

  15. N. Kurra, D. Dutta, and G. Kulkarni, Phys. Chem. Chem. Phys. 15, 8367 (2013).

    Article  Google Scholar 

  16. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Prog. Mater. Sci. 57, 1061 (2012).

    Article  Google Scholar 

  17. A. Loi, I. Manunza, and B. Bonfiglio, Appl. Phys. Lett. 86, 103512 (2005).

    Article  Google Scholar 

  18. A. Sagar, K. Balasubramanian, M. Burghard, and K. Kern, Appl. Phys. Lett. 100, 2013116 (2012).

    Article  Google Scholar 

  19. J. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. Renn, T. Lodge, and C. Frisbie, Nat. Mater. 7, 900 (2008).

    Article  Google Scholar 

  20. B. Kim, M. Kang, V. Pham, T. Cuong, E. Kim, J. Chung, S. Hur, and J. Cho, J. Mater. Chem. 21, 13068 (2011).

    Article  Google Scholar 

  21. B. Kim, H. Jang, S. Lee, B. Hong, J. Ahn, and J. Cho, Nano Lett. 10, 3464 (2010).

    Article  Google Scholar 

  22. L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, Phys. Rep. 473, 51 (2009).

    Article  Google Scholar 

  23. S. Thiemann, S. Sachnov, S. Porscha, P. Wasserscheid, and J. Zaumseil, J. Phys. Chem. C 116, 13536 (2012).

    Article  Google Scholar 

  24. T. Fujimoto and K. Awaga, Phys. Chem. Chem. Phys. 15, 8983 (2013).

    Article  Google Scholar 

  25. W. Zhang, X. Zhang, C. Lu, Y. Wang, and Y. Deng, J. Phys. Chem. C 116, 9227 (2012).

    Article  Google Scholar 

  26. J. Li and J. Kim, Comput. Sci. Technol. 67, 2114 (2007).

    Article  Google Scholar 

  27. H. Wei and H. Eilers, Thin Solid Films 517, 575 (2008).

    Article  Google Scholar 

  28. X. Zhang, E. Huisman, M. Gurram, W. Browne, B. Wees, and B. Feringa, Small (2014). doi:10.1002/smll.201303098.

    Google Scholar 

  29. B.J. Baliga, US Patent. 2003, Patent No. US006545316B1.

Download references

Acknowledgements

This research was supported by the Department of Biotechnology, Govt. of India (Grant No. GAP101612) and the Council of Scientific and Industrial Research, Govt. of India (Grant No. ESC0112). The authors acknowledge Madan Reddy, Mohd Afroz Akhtar, Saurav Haldar, Kalyan Chatterjee, Peuli Nath, and Preeti Singh from CSIR-CMERI, Durgapur, India for their assistance in making the CAD models and preparing the chemicals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11664_2014_3455_MOESM1_ESM.doc

Electronic Supplementary Information (ESI) available: Method for synthesis of AgNPs with particle size in the range of 70 nm to 85 nm. Process to fabricate the IL-FET, AgNP-FET, and rGO-FET. FESEM image demonstrating the size of AgNPs trapped in paper substrate. Exfoliation of graphitic layers in pencil markings on paper substrate revealed through SEM image. (DOC 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Arun, R.K., Nagahanumaiah et al. Silver Nanoparticles in Comparison with Ionic Liquid and rGO as Gate Dopant for Paper–Pencil-Based Flexible Field-Effect Transistors. J. Electron. Mater. 44, 6–12 (2015). https://doi.org/10.1007/s11664-014-3455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3455-0

Keywords

Navigation