Skip to main content
Log in

Molds and Resists Studies for Nanoimprint Lithography of Electrodes in Low-Voltage Polymer Thin-Film Transistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A low-cost patterning of electrodes was investigated looking forward to replacing conventional photolithography for the processing of low-operating voltage polymeric thin-film transistors. Hard silicon, etched by sulfur hexafluoride and oxygen gas mixture, and flexible polydimethylsiloxane imprinting molds were studied through atomic force microscopy (AFM) and field emission gun scanning electron microscopy. The higher the concentration of oxygen in reactive ion etching, the lower the etch rate, sidewall angle, and surface roughness. A concentration around 30 % at 100 mTorr, 65 W and 70 sccm was demonstrated as adequate for submicrometric channels, presenting a reduced etch rate of 176 nm/min. Imprinting with positive photoresist AZ1518 was compared to negative SU-8 2002 by optical microscopy and AFM. Conformal results were obtained only with the last resist by hot embossing at 120 °C and 1 kgf/cm2 for 2 min, followed by a 10 min post-baking at 100 °C. The patterning procedure was applied to define gold source and drain electrodes on oxide-covered substrates to produce bottom-gate bottom-contact transistors. Poly(3-hexylthiophene) (P3HT) devices were processed on high-κ titanium oxynitride (TiO x N y ) deposited by radiofrequency magnetron sputtering over indium tin oxide-covered glass to achieve low-voltage operation. Hole mobility on micrometric imprinted channels may approach amorphous silicon (∼0.01 cm2/V s) and, since these devices operated at less than 5 V, they are not only suitable for electronic applications but also as sensors in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-G. Kang, H.J. Park, S.H. Ahn, T. Xu, and L.J. Guo, IEEE J. Sel. Top. Quant. Electron. 16, 1807 (2010).

    Article  Google Scholar 

  2. Q. Xia, Appl. Phys. A 102, 955 (2011).

    Article  Google Scholar 

  3. J.-G. Kim, Y. Sim, Y. Cho, J.-W. Seo, S. Kwon, J.-W. Park, H.G. Choi, H. Kim, and S. Lee, Microelectron. Eng. 86, 2427 (2009).

    Article  Google Scholar 

  4. D. Li and L.J. Guo, Appl. Phys. Lett. 88, 063513 (2006).

    Article  Google Scholar 

  5. C.P. D’Emic, K.K. Chan, and J. Blum, J. Vac. Sci. Technol. B 10, 1105 (1992).

    Article  Google Scholar 

  6. R.F. Figueroa, S. Spiesshoefer, S.L. Burkett, and L. Schaper, J. Vac. Sci. Technol. B 23, 2226 (2005).

    Article  Google Scholar 

  7. A.F. Isakovic, K. Evans-Lutterodt, D. Elliott, A. Stein, and J.B. Warren, J. Vac. Sci. Technol. A 26, 1182 (2008).

    Article  Google Scholar 

  8. C. Bartic, A. Campitelli, and S. Borghs, Appl. Phys. Lett. 82, 475 (2003).

    Article  Google Scholar 

  9. J.T. Mabeck and G.G. Malliaras, Anal. Bioanal. Chem. 384, 343 (2006).

    Article  Google Scholar 

  10. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).

    Article  Google Scholar 

  11. H. Yang, T.J. Shin, L. Yang, K. Cho, C.Y. Ryu, and Z. Bao, Adv. Funct. Mater. 15, 671 (2005).

    Article  Google Scholar 

  12. V.R. Zanchin, M.R. Cavallari, F.J. Fonseca, K.F. Albertin, I. Pereyra, and A.M. Andrade, ECS Trans. 39, 455 (2011).

    Article  Google Scholar 

  13. R.F.M. Lobo, M.A. Pereira-da-Silva, M. Raposo, R.M. Faria, and O.N. Oliveira Jr, Nanotechnology 10, 389 (1999).

    Article  Google Scholar 

  14. K. Nakamatsu, N. Yamada, K. Kanda, Y. Haruyama, and S. Matsui, Jpn. J. Appl. Phys. 45, L954 (2006).

    Article  Google Scholar 

  15. Y. Kang, M. Okada, S. Omoto, Y. Haruyama, K. Kanda, and S. Matsui, J. Vac. Sci. Tech. B 29, 06FC03 (2011).

    Google Scholar 

  16. G.L.W. Cross, J. Phys. D Appl. Phys. 39, R363 (2006).

    Article  Google Scholar 

  17. S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, Microelectron. Eng. 85, 914 (2008).

    Article  Google Scholar 

  18. K. Trivedi, C. Nelson, L. Tao, M. Goeckner, W. Hu, High-Density Organic Light Emitting Diodes By Nanoimprint Technology, 51st International Conference on Electron, Ion␣and Photon Beam Technology and Nanofabrication (EIPBN), PA-5, Denver, CO, May 30th, 2007.

  19. N.Y. Lee and Y.S. Kim, Nanotechnology 18, 415303 (2007).

    Article  Google Scholar 

  20. L.J. Guo, J. Phys. D Appl. Phys. 37, R123 (2004).

    Article  Google Scholar 

  21. M.E. Stewart, M.J. Motala, J. Yao, L.B. Thompson, and R.G. Nuzzo, Unconventional methods for forming nanopatterns. Proc Inst Mech Eng N 220, 81 (2006).

    Article  Google Scholar 

  22. L. Fumagalli, D. Natali, M. Sampietro, E. Peron, F. Perissinotti, G. Tallarida, and S. Ferrari, Org. Electron. 9, 198 (2008).

    Article  Google Scholar 

  23. M. Surin, Ph Leclère, R. Lazzaroni, J.D. Yuen, G. Wang, D. Moses, A.J. Heeger, S. Cho, and K. Lee, J. Appl. Phys. 100, 033712 (2006).

    Article  Google Scholar 

  24. L. Fumagalli, M. Binda, D. Natali, M. Sampietro, E. Salmoiraghi, and P. Di Gianvincenzo, J. Appl. Phys. 104, 084513 (2008).

    Article  Google Scholar 

  25. H. Jia, S. Gowrisanker, G.K. Pant, R.M. Wallace, and B.E. Gnade, J. Vac. Sci. Technol. A 24, 1228 (2006).

    Article  Google Scholar 

  26. B.H. Hamadani and D. Natelson, Appl. Phys. Lett. 84, 443 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Work supported by the Brazilian agencies FAPESP (09/05589-7) and CNPq (MCT/CT-INFO 17/2009, 142302/2010-4). Special thanks to the cleanroom staff (EPUSP, Brazil), Katia F. Albertin (Univ. Federal do ABC, Brazil) for oxide deposition in transistor fabrication and Luiz F. R. Pereira (Univ. de Aveiro, Portugal) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Roberto Cavallari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallari, M.R., Zanchin, V.R., Pojar, M. et al. Molds and Resists Studies for Nanoimprint Lithography of Electrodes in Low-Voltage Polymer Thin-Film Transistors. J. Electron. Mater. 43, 1317–1325 (2014). https://doi.org/10.1007/s11664-014-3071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3071-z

Keywords

Navigation