Skip to main content
Log in

In Situ Growth of Carbon Nanotubes on Ti Powder for Strengthening of Ti Matrix Composite via Nanotube–Particle Dual Morphology

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In situ synthesis of carbon nanotubes (CNTs) on Ti powder decorated with Ni catalyst enabled us to obtain a high-quality CNTs/Ti composite powder via fluidized bed chemical vapor deposition (FBCVD) process. The composite powder was characterized by a combination of high structural integrity and uniform dispersion of CNTs, which is not obtained by traditional ball-milling route. These advantages enabled the retention of CNTs in the near-fully dense titanium matrix composite (TMC), together with the uniform dispersion of TiC particles. The CNTs and TiC particles coordinated with each other and contributed to a synergistic effect involving load transfer from the matrix to CNTs and dispersion strengthening of TiC particles. The nanotube–particle-reinforced TMC exhibited superior mechanical properties in comparison to single-phase-reinforced TMCs. The catalytic behavior of Ni, controllable synthesis of CNTs, the retention behavior of CNTs, and the formation mechanism of TiC particles during the sintering process are discussed in detail.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.D. Hayatb, H. Singh, Z. He, and P. Cao: Compos. A Appl. Sci. Manuf., 2019, vol. 121, pp. 418–38.

    Google Scholar 

  2. H. Singh, M. Hayat, Z. He, V.K. Peterson, R. Das, and P. Cao: Compos. A Appl. Sci. Manuf., 2019, vol. 124, pp. 105501.

    CAS  Google Scholar 

  3. X.J. Zhang, F. Song, Z.P. Wei, W.C. Yang, and Z.K. Dai: Mater. Sci. Eng. A, 2017, vol. 705, pp. 153–9.

    CAS  Google Scholar 

  4. L.J. Huang, L. Geng, and H.X. Peng: Prog. Mater. Sci., 2015, vol. 71, pp. 93–168.

    CAS  Google Scholar 

  5. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2859–62.

    Google Scholar 

  6. L.J. Huang, L. Geng, H.Y. Xu, and H.X. Peng: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2859–62.

    Google Scholar 

  7. C. Cai, B. Song, C.L. Qiu, L.F. Li, P.J. Xue, Q.S. Wei, J.X. Zhou, H. Nan, H.X. Chen, and Y.S. Shi: J. Alloy. Compd., 2017, vol. 710, pp. 364–74.

    CAS  Google Scholar 

  8. Shirvanimoghaddam K, Hamim SU, Akbari MK, Fakhrhoseini SM, Khayyam H, Pakseresht AH, Ghasali E, Zabet M, Munir KS, Jia S, Davim JP, Naebe M (2017) Composites A 92:70–96

    CAS  Google Scholar 

  9. A. Azarniya, S. Sovizi, H.R.M. Hosseini, T. Varol, A. Kawasaki, and S. Ramakrishn: Prog. Mater. Sci., 2017, vol. 90, pp. 276–324.

    CAS  Google Scholar 

  10. B. Chen, S.F. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, and K. Kondoh: Compos. Sci. Technol., 2015, vol. 113, pp. 1–8.

    CAS  Google Scholar 

  11. J. Xiang, Y.F. Han, J.X. Li, P.K. Qiu, X.L. Sun, and W.J. Lu: J. Alloy. Compd., 2017, vol. 723, pp. 57–66.

    Google Scholar 

  12. L. Jia, X. Li, K. Kondoh, B. Chen, S.F. Li, J. Umeda, and Z.L. Lu: Mater. Charact., 2019, vol. 151, pp. 6–14.

    CAS  Google Scholar 

  13. Y. Jiao, L.J. Huang, and L. Geng: J. Alloy. Compd., 2018, vol. 767, pp. 1169–215.

    Google Scholar 

  14. S.F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, and Y. Fu: Mater. Des., 2016, vol. 95, pp. 127–32.

    CAS  Google Scholar 

  15. F.C. Ma, T.R. Wang, P. Liu, W. Li, X.K. Liu, X.H. Chen, D. Pan, and W.J. Lu: Mater. Sci. Eng. A, 2016, vol. 654, pp. 352–8.

    CAS  Google Scholar 

  16. M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim, and S.H. Hong: Scr. Mater., 2012, vol. 66, pp. 487–90.

    CAS  Google Scholar 

  17. F.C. Wang, Z.H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, and Z.F. Liu: Carbon, 2015, vol. 95, pp. 396–407.

    CAS  Google Scholar 

  18. K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu: Compos. Sci. Technol., 2012, vol. 72, pp. 1291–7.

    CAS  Google Scholar 

  19. S.F. Li, B. Sun, H. Imai, and K. Kondoh: Carbon, 2013, vol. 61, pp. 216–28.

    CAS  Google Scholar 

  20. P.M. Ajayan: Chem. Rev., 1999, vol. 99, pp. 1787–800.

    CAS  Google Scholar 

  21. K.S. Munir and C. Wen: Crit. Rev. Solid State Mater. Sci., 2016, vol. 41, pp. 347–66.

    CAS  Google Scholar 

  22. K.S. Munir, Y.C. Li, M. Qian, and C. Wen: Carbon, 2016, vol. 99, pp. 384–97.

    CAS  Google Scholar 

  23. V.S.A. Challa and R.D.K. Misra: Mater. Technol., 2017, vol. 32, pp. 109–15.

    CAS  Google Scholar 

  24. R.D.K. Misra, D. Depan, V.S.A. Challa, and J.S. Shah: Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 19122–9.

    CAS  Google Scholar 

  25. R.D.K. Misra, D. Depan, V.S.A. Challa, and J.S. Shah: Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 12988–97.

    CAS  Google Scholar 

  26. D. Depan and R.D.K. Misra: Nanoscale, 2012, vol. 4, pp. 6325–35.

    CAS  Google Scholar 

  27. R.D.K. Misra and P. Chaudhari: J. Biomed. Mater. Res. A, 2013, vol. 101A, pp. 1059–68.

    CAS  Google Scholar 

  28. R.D.K. Misra and P. Chaudhari: J. Biomed. Mater. Res. A, 2013, vol. 101, pp. 528–536.

    CAS  Google Scholar 

  29. Q. Yuan, Q. Bao, and R.D.K. Misra: Mater. Technol., 2012, vol. 27, pp.289–94.

    CAS  Google Scholar 

  30. R.D.K. Misra, D. Depan, and H. Narsale: Chem. Phys., 2012, vol. 213, pp. 1321–1329.

    CAS  Google Scholar 

  31. Z. Jia, F. Feng, Q. Yuan, and R.D.K. Misra: Mater. Sci. Eng. B, 2012, vol. 177, pp. 666–72.

    CAS  Google Scholar 

  32. C. Lei, G.Y. Zhang, Q.S. Zhu, and Z.H. Xie: Powder Technol., 2016, vol. 296, pp. 79–86.

    CAS  Google Scholar 

  33. S.F. Li, C. Tan, Y. Liu, P.P. Lv, Q.S. Zhu, Y. Shi, and Y.F. Yang: Materialia, 2018, vol. 2, pp. 68–72.

    Google Scholar 

  34. L. Zhang, F.X. Xin, Z. Du, M.Q. Xiang, Y.F. Yang, Q.S. Zhu, and Y. Shi: J. Am. Ceram. Soc., 2019, vol. 102, pp. 1599–607.

    CAS  Google Scholar 

  35. L. Zhang, F.X. Xin, S.F. Li, Y.F. Yang, Q.S. Zhu, and G. Wang: J. Am. Ceram. Soc., 2019, vol. 102, pp. 4492–501.

    CAS  Google Scholar 

  36. S.M. George: Chem. Rev., 2010, vol. 110, pp. 111–31.

    CAS  Google Scholar 

  37. Y. Yan, J. Miao, Z. Yang, F.X. Xiao, H.B. Yang, B. Liu, and Y.H. Yang: Chem. Soc. Rev., 2015, vol. 44, pp. 3295–346.

    CAS  Google Scholar 

  38. K.S. Munir, D.T. Oldfield, and C. Wen: Adv. Eng. Mater., 2016, vol. 18, pp. 294–303.

    CAS  Google Scholar 

  39. K.S. Munir, Y. Zheng, D. Zhang, J. Lin, Y. Li, and C. Wen: Mater. Sci. Eng. A, 2017, vol. 696, pp. 10–25.

    CAS  Google Scholar 

  40. K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S.R. Bakshi: J. Alloy. Compd., 2017, vol. 709, pp. 829–41.

    CAS  Google Scholar 

  41. A.O. Adegbenjoa, P.A. Olubambia, J.H. Potgieter, M.B. Shongwe, and M. Ramakokovhu: Mater. Des., 2017, vol. 128, pp. 119–29.

    Google Scholar 

  42. K.S. Munir, Y.F. Zheng, D.L. Zhang, J.X. Lin, Y.C. Li, and C. Wen: Mater. Sci. Eng. A, 2017, vol. 688, pp. 505–23.

    CAS  Google Scholar 

  43. F. Xue, J.H. Sui, F. Yan, and C. Wei: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1586–9.

    Google Scholar 

  44. F.M. Zhang and T.F. Liu, Compos. Part B Eng., 2019, vol. 165, pp. 143–54.

    CAS  Google Scholar 

Download references

Acknowledgments

The research study was supported by the DNL Cooperation Fund, CAS (No. DNL180304), the National Natural Science Foundation of China (Nos. 51801201 and 51874271), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20190011), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC045). The authors are grateful to Professor R. D. K. Misra for having agreed to collaborate in this study based on his prior experience with CNT-based composite systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S.F., Cui, J.Y., Yang, L.F. et al. In Situ Growth of Carbon Nanotubes on Ti Powder for Strengthening of Ti Matrix Composite via Nanotube–Particle Dual Morphology. Metall Mater Trans A 51, 5932–5944 (2020). https://doi.org/10.1007/s11661-020-05988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05988-7

Navigation