Skip to main content
Log in

Enhancement of Impact Toughness Via Tailoring Deformation Compatibility of Constituent Phases in Duplex Q&P Steel with Excellent Strength and Ductility

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Q&P steels possessing a combination of ultra-high product of strength and tensile elongation (PSE) and superior impact toughness was obtained by tailoring the micromechanical deformation ability of retained austenite (RA) and martensite via low-temperature partitioning. Our results indicate that impact toughness is more susceptible to the heterogeneity of mechanical properties of constituent phases than its tensile mechanical properties. Through optimizing the difference between the constituent phases, the impact toughness can be improved significantly by the enhancement of micromechanical deformation ability of tempered martensite (TM) and corresponding alleviation of deformation incompatibility. Simultaneously, high PSE was preserved by using the deformation potential of RA and its transformation-induced plasticity effect. Load–unload–reload (LUR) tests were carried out to characterize the evolution of flow stress components and the influence of partitioning temperatures on the degree of deformation inhomogeneity between constituent phases during plastic deformation. Furthermore, the mechanical properties and micromechanical deformation ability of the constituent phases were quantitatively characterized using the nanoindentation technique, which indicates that degree of incompatible deformation is alleviated for steels partitioned at relatively high temperatures due to the enhancement of the deformation ability of TM. The underlying relationship between the dynamic transformation of metastable austenite based on the Olson and Cohen model, and high PSE was elucidated. As the partitioning temperature increases, the mechanical stability of RA increases, which is attributed to the synergistic effect of carbon partitioning and the improvement of compatible deformation capability of TM and RA, resulting in an excellent combination of concurrent ductility and impact toughness. Based on the above characterization and analysis, further investigation into the fractured morphology of impact and edge notched specimens was carried out to provide a comprehensive understanding of the damage and fracture mechanism, and to reveal the reasons for the improvement of mechanical properties. The nucleation position and propagation path of microvoids and microcracks depend on the deformation compatibility of constituent phases and the morphology of cementite in tempered martensite. The nucleation sites of microcracks and microvoids at the phase interface, due to stress concentration and dislocation pile-ups for incompatibility deformation of constituent phases, are substituted with nucleation sites at fractured cementite in TM with the increasing partitioning temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer and L. Meyer, International Journal of plasticity 2000, vol. 16, pp. 1391-1409.

    Google Scholar 

  2. D. De Knijf, R. Petrov, C. Föjer and L. A. Kestens, Materials Science and Engineering: A 2014, vol. 615, pp. 107-115.

    Google Scholar 

  3. X. Wang, Z. Guo and Y. Rong, Materials Science and Engineering: A 2011, vol. 529, pp. 35-40.

    CAS  Google Scholar 

  4. Z. Li, K. G. Pradeep, Y. Deng, D. Raabe and C. C. Tasan, Nature 2016, vol. 534, pp. 227–230.

    CAS  Google Scholar 

  5. B. He, B. Hu, H. Yen, G. Cheng, Z. Wang, H. Luo and M. Huang, Science 2017, vol. 357, pp. 1029-1032.

    CAS  Google Scholar 

  6. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada and S. Takaki, Materials Science and Engineering: A 2012, vol. 532, pp. 585-592.

    CAS  Google Scholar 

  7. E. Pereloma, K. Russell, M. Miller and I. B. Timokhina, Scripta materialia 2008, vol. 58, pp. 1078-1081.

    CAS  Google Scholar 

  8. L. Baker, S. Daniel and J. Parker, Materials science and technology 2002, vol. 18, pp. 355-368.

    CAS  Google Scholar 

  9. J. Speer, D. K. Matlock, B. C. De Cooman and J. G. Schroth, Acta Materialia 2003, vol. 51, pp. 2611-2622.

    CAS  Google Scholar 

  10. D. K. Matlock, V. Brautigam and J. G. Speer, In Materials Science Forum, (Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland: 2003), pp 1089–94.

  11. D. K. Matlock and J. G. Speer, In Microstructure and texture in steels, (Springer, New York, 2009), pp 185–205.

    Google Scholar 

  12. J. G. Speer, F. C. R. Assunção, D. K. Matlock and D. V. Edmonds, Materials Research 2005, vol. 8, pp. 417-423.

    CAS  Google Scholar 

  13. J. G. Speer, D. V. Edmonds, F. C. Rizzo and D. K. Matlock, Current Opinion in Solid State and Materials Science 2004, vol. 8, pp. 219-237.

    CAS  Google Scholar 

  14. T. Hsu and Z. Y. Xu, In Materials Science Forum, (Trans Tech Publ, Zürich, 2007), pp 2283–86.

    Google Scholar 

  15. H. Li, X. Lu, W. Li and X. Jin, Metallurgical and Materials Transactions A 2010, vol. 41, pp. 1284-1300.

    CAS  Google Scholar 

  16. J. Mola and B. C. De Cooman, Metallurgical and Materials Transactions A 2013, vol. 44, pp. 946-967.

    Google Scholar 

  17. E. De Moor, S. Lacroix, A. Clarke, J. Penning and J. Speer, Metallurgical and Materials Transactions A 2008, vol. 39, pp. 2586–2595.

    CAS  Google Scholar 

  18. E. J. Seo, L. Cho and B. C. De Cooman, Metallurgical and Materials Transactions A 2016, vol. 47, pp. 3797-3802.

    Google Scholar 

  19. H. Zhao, W. Li, L. Wang, S. Zhou and X. Jin, Metallurgical and Materials Transactions A 2016, vol. 47, pp. 3943-3955.

    CAS  Google Scholar 

  20. S. Qin, Y. Liu, Q. Hao, Y. Wang, N. Chen, X. Zuo and Y. Rong, Metallurgical and Materials Transactions A 2015, vol. 46, pp. 4047-4055.

    CAS  Google Scholar 

  21. H. Yi, P. Chen, Z. Hou, N. Hong, H. Cai, Y. Xu, D. Wu and G. Wang, Scripta Materialia 2013, vol. 68, pp. 370-374.

    CAS  Google Scholar 

  22. Y.-j. Li, X.-l. Li, G. Yuan, J. Kang, D. Chen and G.-d. Wang, Materials Characterization 2016, vol. 121, pp. 157-165.

    CAS  Google Scholar 

  23. H. Liu, X. Lu, X. Jin, H. Dong and J. Shi, Scripta Materialia 2011, vol. 64, pp. 749-752.

    CAS  Google Scholar 

  24. X. Wu, P. Jiang, L. Chen, F. Yuan and Y. T. Zhu, Proceedings of the National Academy of Sciences 2014, vol. 111, pp. 7197-7201.

    CAS  Google Scholar 

  25. X. Wu, P. Jiang, L. Chen, J. Zhang, F. Yuan and Y. Zhu, Materials Research Letters 2014, vol. 2, pp. 185-191.

    CAS  Google Scholar 

  26. M. Yang, Y. Pan, F. Yuan, Y. Zhu and X. Wu, Materials Research Letters 2016, vol. 4, pp. 145-151.

    CAS  Google Scholar 

  27. M. Yang, F. Yuan, Q. Xie, Y. Wang, E. Ma and X. Wu, Acta Mater 2016, vol. 109, pp. 213-222.

    CAS  Google Scholar 

  28. H. Lee, M. C. Jo, S. S. Sohn, A. Zargaran, J. H. Ryu, N. J. Kim and S. Lee, Acta Mater 2018, vol. 147, pp. 247-260.

    CAS  Google Scholar 

  29. M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe, Acta Materialia 2011, vol. 59, pp. 658-670.

    CAS  Google Scholar 

  30. C. C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters and D. Raabe, Acta Materialia 2014, vol. 81, pp. 386-400.

    CAS  Google Scholar 

  31. C. C. Tasan, J. P. Hoefnagels, M. Diehl, D. Yan, F. Roters and D. Raabe, International Journal of Plasticity 2014, vol. 63, pp. 198-210.

    CAS  Google Scholar 

  32. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber and M. Calcagnotto, Acta Mater 2011, vol. 59, pp. 4387-4394.

    CAS  Google Scholar 

  33. B. Fu, W. Yang, Y. Wang, L. Li, Z. Sun and Y. Ren, Acta Materialia 2014, vol. 76, pp. 342-354.

    CAS  Google Scholar 

  34. E. P. Bagliani, M. Santofimia, L. Zhao, J. Sietsma and E. Anelli, Materials Science and Engineering: A 2013, vol. 559, pp. 486-495.

    Google Scholar 

  35. X. Huang, W. Liu, Y. Huang, H. Chen and W. Huang, Journal of materials processing technology 2015, vol. 222, pp. 181-187.

    CAS  Google Scholar 

  36. L. Zhao, L. Qian, J. Meng, Q. Zhou and F. Zhang, Scripta Materialia 2016, vol. 112, pp. 96-100.

    CAS  Google Scholar 

  37. X. Wang, K. Wu, F. Hu, L. Yu and X. Wan, Scripta Materialia 2014, vol. 74, pp. 56-59.

    CAS  Google Scholar 

  38. G. Gao, B. An, H. Zhang, H. Guo, X. Gui and B. Bai, Materials Science and Engineering: A 2017, vol. 702, pp. 104-112.

    CAS  Google Scholar 

  39. G. Lai, W. Wood, R. Clark, V. Zackay and E. Parker, Metallurgical Transactions 1974, vol. 5, pp. 1663-1670.

    CAS  Google Scholar 

  40. C. Wang, M. Wang, J. Shi, W. Hui and H. Dong, Scripta Materialia 2008, vol. 58, pp. 492-495.

    CAS  Google Scholar 

  41. Y. Kimura, T. Inoue, F. Yin and K. Tsuzaki, Science 2008, vol. 320, pp. 1057-1060.

    CAS  Google Scholar 

  42. M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi and C. C. Tasan, Science 2017, vol. 355, pp. 1055-1057.

    CAS  Google Scholar 

  43. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan and B. Bai, Acta Mater 2014, vol. 76, pp. 425-433.

    CAS  Google Scholar 

  44. G. Gao, H. Zhang, Z. Tan, W. Liu and B. Bai, Materials Science and Engineering: A 2013, vol. 559, pp. 165-169.

    CAS  Google Scholar 

  45. G. Gao, H. Zhang, X. Gui, Z. Tan and B. Bai, Journal of Materials Science & Technology 2015, vol. 31, pp. 199-204.

    CAS  Google Scholar 

  46. L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe and C. C. Tasan, Acta Mater 2016, vol. 121, pp. 202-214.

    CAS  Google Scholar 

  47. J. Zhao, A. De and B. De Cooman, Materials Letters 2000, vol. 44, pp. 374-378.

    CAS  Google Scholar 

  48. J. Snoek, Physica 1941, vol. 8, pp. 711-733.

    CAS  Google Scholar 

  49. W. Song, D. Bogdanovski, A. Yildiz, J. Houston, R. Dronskowski and W. Bleck, Metals 2018, vol. 8, pp. 44–60.

    Google Scholar 

  50. A. H. Cottrell and B. Bilby, Proceedings of the Physical Society. Section A 1949, vol. 62, pp. 49–62.

    Google Scholar 

  51. J.-B. Seol, J. Jung, Y. Jang and C. Park, Acta Mater 2013, vol. 61, pp. 558-578.

    CAS  Google Scholar 

  52. Steels: microstructure and properties. (1981).

  53. D. V. Wilson and B. Russell, Acta Metallurgica 1960, vol. 8, pp. 468-479.

    CAS  Google Scholar 

  54. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Materials Science and Engineering: A 2010, vol. 527, pp. 2738-2746.

    Google Scholar 

  55. A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl and W. Bleck, International Journal of Plasticity 2013, vol. 43, pp. 128-152.

    CAS  Google Scholar 

  56. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu and H. Wang, Nature communications 2014, vol. 5, pp. 3580–3587.

    Google Scholar 

  57. Y. Li, W. Li, N. Min, W. Liu and X. Jin, Acta Mater 2017, vol. 139, pp. 96-108.

    CAS  Google Scholar 

  58. Y. Li, Y. Lu, W. Li, M. Khedr, H. Liu and X. Jin, Acta Mater 2018, vol. 158, pp. 79-94.

    CAS  Google Scholar 

  59. X. Feaugas, Acta Materialia 1999, vol. 47, pp. 3617-3632.

    CAS  Google Scholar 

  60. C. Sinclair, G. Saada and J. Embury, Philosophical Magazine 2006, vol. 86, pp. 4081-4098.

    CAS  Google Scholar 

  61. Y. Xiang and J. Vlassak, Acta Materialia 2006, vol. 54, pp. 5449-5460.

    CAS  Google Scholar 

  62. P. O. Guglielmi, M. Ziehmer and E. T. Lilleodden, Acta Mater 2018, vol. 150, pp. 195-205.

    CAS  Google Scholar 

  63. P. J. Konijnenberg, S. Zaefferer and D. Raabe, Acta Mater 2015, vol. 99, pp. 402-414.

    CAS  Google Scholar 

  64. C. Moussa, M. Bernacki, R. Besnard and N. Bozzolo, Ultramicroscopy 2017, vol. 179, pp. 63-72.

    CAS  Google Scholar 

  65. D. Wang, X. Lu, Y. Deng, X. Guo and A. Barnoush, Acta Mater 2019, vol. 166, pp. 618-629.

    CAS  Google Scholar 

  66. W. C. Oliver and G. M. Pharr, Journal of materials research 2004, vol. 19, pp. 3-20.

    CAS  Google Scholar 

  67. B. He, Z. Liang and M. Huang, Scripta Materialia 2018, vol. 150, pp. 134-138.

    CAS  Google Scholar 

  68. Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng, B. An, X. Chen and X. Wang, Materials Characterization 2017, vol. 127, pp. 35-40.

    CAS  Google Scholar 

  69. G. Cheng, K. S. Choi, X. Hu and X. Sun, Materials Science and Engineering: A 2016, vol. 652, pp. 384-395.

    CAS  Google Scholar 

  70. P. Tao, J.-m. Gong, Y.-f. Wang, Y. Jiang, Y. Li and W.-w. Cen, Results in Physics 2018, vol. 11, pp. 377-384.

    Google Scholar 

  71. A. K. Sachdev, Metallurgical Transactions A 1982, vol. 13, pp. 1793-1797.

    Google Scholar 

  72. P. Rodriguez, Bulletin of Materials Science 1984, vol. 6, pp. 653-663.

    Google Scholar 

  73. J. K. Kim, L. Chen, H. S. Kim, S. K. Kim, Y. Estrin and B. C. D. Cooman, Metallurgical & Materials Transactions A 2009, vol. 40, pp. 3147-3158.

    CAS  Google Scholar 

  74. R. W. Hayes, Acta Metallurgica 1983, vol. 31, pp. 365-371.

    CAS  Google Scholar 

  75. C. Gupta, J. K. Chakravartty, S. L. Wadekar and J. S. Dubey, Materials Science & Engineering A 2000, vol. 292, pp. 49-55.

    Google Scholar 

  76. G. Fribourg, Y. Bréchet, A. Deschamps and A. Simar, Acta Mater 2011, vol. 59, pp. 3621-3635.

    CAS  Google Scholar 

  77. Deschamps A, Decreus B, Geuser F, Dorin T and Weyland M, Acta Mater. 2013, 61, 4010-4021.

    CAS  Google Scholar 

  78. W. Xiaolei, Y. Muxin, Y. Fuping, W. Guilin, W. Yujie, H. Xiaoxu and Z. Yuntian, Proceedings of the National Academy of Sciences of the United States of America 2015, vol. 112, pp. 14501–14505.

    Google Scholar 

  79. W. Yinmin, C. Mingwei, Z. Fenghua and M. En, Nature 2002, vol. 419, pp. 912-915.

    Google Scholar 

  80. Z. Li and D. Wu, Isij Int 2006, vol. 46, pp. 121-128.

    CAS  Google Scholar 

  81. J. H. Choi, M. C. Jo, H. Lee, A. Zargaran, T. Song, S. S. Sohn, N. J. Kim and S. Lee, Acta Mater 2019, vol. 166, pp. 246-260.

    CAS  Google Scholar 

  82. H. Beattie and F. VerSnyder, Nature 1956, vol. 178, pp. 208-209.

    CAS  Google Scholar 

  83. F. R. N. Nabarro and T. Mura, Journal of Applied Mechanics 1981, vol. 48, pp. 451-452.

    Google Scholar 

  84. A. S. Argon, Journal of Applied Mechanics 1977, vol. 44, p. 801.

    Google Scholar 

  85. L. Thilly, S. V. Petegem, P. O. Renault, F. Lecouturier, V. Vidal, B. Schmitt and H. V. Swygenhoven, Acta Materialia 2009, vol. 57, pp. 3157-3169.

    CAS  Google Scholar 

  86. G. Saada, Philosophical Magazine 2006, vol. 86, pp. 4081-4098.

    Google Scholar 

  87. X. Yang, X. Ma, J. Moering, Z. Hao, W. Wei, Y. Gong, J. Tao, Y. Zhu and X. Zhu, Mater. Sci. Eng. A 2015, 645, 138.

    Google Scholar 

  88. H. Mughrabi, Acta Metallurgica 1983, vol. 31, pp. 1367-1379.

    CAS  Google Scholar 

  89. G. D. Moan and J. D. Embury, Acta Metallurgica 1979, vol. 27, pp. 903-914.

    CAS  Google Scholar 

  90. M. F. Ashby, Philosophical Magazine 1970, vol. 21, pp. 399-424.

    CAS  Google Scholar 

  91. H. Gao, Y. Huang, W. Nix and J. Hutchinson, Journal of the Mechanics and Physics of Solids 1999, vol. 47, pp. 1239-1263.

    Google Scholar 

  92. H. Gao and Y. Huang, Scripta Materialia 2003, vol. 48, pp. 113-118.

    CAS  Google Scholar 

  93. G. Olson and M. Cohen, Metallurgical transactions A 1975, vol. 6, pp. 791–795.

    Google Scholar 

  94. B. Fu, W. Yang, L. Li and Z. Sun, Materials Science and Engineering: A 2014, vol. 603, pp. 134-140.

    CAS  Google Scholar 

  95. L. Samek, E. De Moor, J. Penning and B. De Cooman, Metallurgical and Materials Transactions A 2006, vol. 37, pp. 109-124.

    CAS  Google Scholar 

  96. X. Tan, D. Ponge, W. Lu, Y. Xu, X. Yang, X. Rao, D. Wu and D. Raabe, Acta Mater 2019, vol. 165, pp. 561-576.

    CAS  Google Scholar 

  97. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun and H. Dong, Acta Mater 2011, vol. 59, pp. 4002-4014.

    CAS  Google Scholar 

  98. D. Curry, Metal science 1980, vol. 14, pp. 319-326.

    CAS  Google Scholar 

  99. P. Pratt, Metal Science 1980, vol. 14, pp. 363-374.

    CAS  Google Scholar 

  100. W. Dahl and D. Dormagen, In Elastic-Plastic Fracture Mechanics, (Springer, New York 1985), pp 203-25.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the financial support of the National Key Research and Development Program of China (Grant No. 2017YFB0304401), National Natural Science Foundation of China (Grant Nos. 51901128, 51831002, 51201105 and 51601113), and the Startup Fund for Youngman Research at SJTU (SFYR at SJTU). Qiaoshi Zeng acknowledges the financial support from NSFC (Grant No. 51871054). The authors also gratefully acknowledge the support provided by the Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Gong or Xuejun Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 25, 2019.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Gong, Y., Liang, T. et al. Enhancement of Impact Toughness Via Tailoring Deformation Compatibility of Constituent Phases in Duplex Q&P Steel with Excellent Strength and Ductility. Metall Mater Trans A 51, 2097–2117 (2020). https://doi.org/10.1007/s11661-020-05701-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05701-8

Navigation