Skip to main content
Log in

Phase-Field Modeling of Microstructure Evolution in the Presence of Bubble During Solidification

  • 5th World Congress on Integrated Computational Materials Engineering
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Simulation of the solid–liquid–gas interaction during solidification is challenging due to the presence of complex phase interfaces, bubble deformation, and high liquid/gas density ratio. In this work, a hybrid phase-field lattice-Boltzmann (PFLB) approach, together with a parallel and adaptive-mesh-refinement (Para-AMR) algorithm, is developed to model interactions between the gas bubble and solid growth front during solidification. The solid growth and bubble evolution are solved by the phase-field method. Both melt flow and bubble movement are determined by a kinetic-based lattice-Boltzmann model. Bubble dynamics during alloy solidification is modeled and compared with experiments, and a good agreement is achieved for various solid/liquid interfaces including planar, cellular, and dendritic interfaces. Results show that the effect of the bubble on solid array is dependent on the solid/liquid interface morphology, bubble size, and relative position between the bubble center and dendritic tip. Two interaction mechanisms, including engulfment and entrapment, are compared, and the difference is caused mainly by the redistribution of solute. The interaction mechanism between the rising multibubbles with large deformation and the dendritic array is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, 2009.

    Google Scholar 

  2. P.D. Lee and J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155–69.

    CAS  Google Scholar 

  3. H. Liao, L. Zhao, Y. Wu, R. Fan, Q. Wang, and Y. Pan: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2587–90.

    Google Scholar 

  4. L. Arnberg and R.H. Mathiesen: Jom-Us, 2007, vol. 59, pp. 20–26.

    CAS  Google Scholar 

  5. M. Felberbaum and M. Rappaz: Acta Mater., 2011, vol. 59, pp. 6849–60.

    CAS  Google Scholar 

  6. L. Zhao, H. Liao, Y. Pan, L. Wang, and Q. Wang: Scripta Mater., 2011, vol. 65, pp. 795–98.

    CAS  Google Scholar 

  7. S. Morankar, M. Mandal, N. Kourra, M.A. Williams, R. Mitra, and P. Srirangam: Jom-Us, 2019, vol. 71, pp. 4050–58.

    CAS  Google Scholar 

  8. V. Khalajzadeh, K.D. Carlson, D.G. Backman, and C. Beckermann: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1797–1816.

    Google Scholar 

  9. P.D. Lee, A. Chirazi, and D. See: J. Light Met., 2001, vol. 1, pp. 15–30.

    Google Scholar 

  10. C. Pequet, M. Gremaud, and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2095–2106.

    CAS  Google Scholar 

  11. K.D. Carlson, Z. Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 541–55.

    CAS  Google Scholar 

  12. Q. Zhang, T. Wang, Z. Yao, and M. Zhu: Materialia, 2018, vol. 4, pp. 211–20.

    Google Scholar 

  13. H. Meidani and A. Jacot: Acta Mater., 2011, vol. 59, pp. 3032–40.

    CAS  Google Scholar 

  14. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Ann. Rev. Mater. Res., 2002, vol. 32, pp. 163–94.

    CAS  Google Scholar 

  15. M. Felberbaum and A. Jacot: in Modeling of Casting, Welding, and Advanced Solidification Processes—XII, S.L. Cockcroft and D.M. Maijer, eds., TMS, Warrendale, PA, 2009, pp. 369–76.

  16. A. Carré, B. Böettger, and M. Apel: Int. J. Mater. Res., 2010, vol. 101, pp. 510–14.

    Google Scholar 

  17. J. Eiken, B. Boettger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73, p. 066122.

    CAS  Google Scholar 

  18. L. Du, L. Wang, B. Zheng, and H. Du: Comp. Mater. Sci., 2016, vol. 114, pp. 94–98.

    CAS  Google Scholar 

  19. J.C. Ramirez, C. Beckermann, A. Karma, and H.J. Diepers: Phys. Rev. E, 2004, vol. 69, p. 051607.

    CAS  Google Scholar 

  20. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Phys. Rev. E, 2019, vol. 100, p. 023305.

    CAS  Google Scholar 

  21. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E.M. Viggen: The Lattice Boltzmann Method Principles and Practice, Springer, Cham, Switzerland, 2017.

    Google Scholar 

  22. A. Zhang, S. Meng, Z. Guo, J. Du, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1514–26.

    Google Scholar 

  23. T. Takaki, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki: J. Cryst. Growth, 2017, vol. 474, pp. 146–53.

    CAS  Google Scholar 

  24. D. Medvedev and K. Kassner: Phys. Rev. E, 2005, vol. 72, p. 056703.

    Google Scholar 

  25. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 517–30.

    Google Scholar 

  26. A. Zhang, J. Du, Z. Guo, and S. Xiong: Phys. Rev. E, 2018, vol. 98, p. 043301.

    CAS  Google Scholar 

  27. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Scripta Mater., 2019, vol. 165, pp. 64–67.

    CAS  Google Scholar 

  28. X. Zhang, J. Kang, Z. Guo, S. Xiong, and Q. Han: Comput. Phys. Commun., 2018, vol. 223, pp. 18–27.

    CAS  Google Scholar 

  29. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Philos. Mag., 2019, vol. 99, pp. 2920–40.

    CAS  Google Scholar 

  30. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3603–15.

    Google Scholar 

  31. A. Zhang, Z. Guo, Q. Wang, and S. Xiong: Phys. Fluids, 2019, vol. 31, p. 063106.

    Google Scholar 

  32. P.L. Bhatnagar, E.P. Gross, and M. Krook: Phys. Rev., 1954, vol. 94, pp. 511–25.

    CAS  Google Scholar 

  33. Z. Guo, C. Zheng, and B. Shi: Phys. Rev. E, 2002, vol. 65, p. 046308.

    Google Scholar 

  34. C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong: J. Comput. Phys., 1999, vol. 154, pp. 468–96.

    CAS  Google Scholar 

  35. A. Fakhari, M. Geier, and T. Lee: J. Comput. Phys., 2016, vol. 315, pp. 434–57.

    CAS  Google Scholar 

  36. J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: Phys. Rev. Mater., 2018, vol. 2, p. 083402.

    CAS  Google Scholar 

  37. J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu, and S. Xiong: Acta Mater., 2018, vol. 161, pp. 35–46.

    CAS  Google Scholar 

  38. A. Zhang, Z. Guo, and S.M. Xiong: Phys. Rev. E, 2018, vol. 97, p. 053302.

    CAS  Google Scholar 

  39. M. Berger and I. Rigoutsos: IEEE Trans. Syst. Man. Cybern., 1991, vol. 21, pp. 1278–86.

    Google Scholar 

  40. J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: ACS Omega, 2017, vol. 2, pp. 8803–09.

    CAS  Google Scholar 

  41. A. Karma and W. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323–49.

    CAS  Google Scholar 

  42. S. Hou, Q. Zou, S. Chen, G. Doolen, and A. Cogley: J. Comput. Phys., 1994, vol. 118, pp. 329–47.

    Google Scholar 

  43. H.Z. Yuan, C. Shu, Y. Wang, and S. Shu: Phys. Fluids, 2018, vol. 30, p. 040908.

    Google Scholar 

  44. R. Krishna, M.I. Urseanu, J.M. van Baten, and J. Ellenberger: Int. Commun. Heat Mass Transfer, 1999, vol. 26, pp. 781–90.

    CAS  Google Scholar 

  45. D. Bhaga and M.E. Weber: J. Fluid Mech., 1981, vol. 105, pp. 61–85.

    CAS  Google Scholar 

  46. M. Alizadeh, S.M. Seyyedi, M.T. Rahni, and D.D. Ganji: J. Mol. Liq., 2017, vol. 236, pp. 151–61.

    CAS  Google Scholar 

  47. A. Zhang, J. Du, S. Meng, F. Liu, Z. Guo, Q. Wang, and S. Xiong: Comp. Mater. Sci., 2019, vol. 171, p. 109274.

    CAS  Google Scholar 

  48. H. Xing, J.Y. Wang, C.L. Chen, K.X. Jin, and Z.F. Shen: Scripta Mater., 2010, vol. 63, pp. 1228–31.

    CAS  Google Scholar 

  49. H. Xing, J.Y. Wang, C.L. Chen, Z.F. Shen, and C.W. Zhao: J. Cryst. Growth, 2012, vol. 338, pp. 256–61.

    CAS  Google Scholar 

  50. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Google Scholar 

  51. S.H. Han and R. Trivedi: Acta Metall. Mater., 1994, vol. 42, pp. 25–41.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1537202) and the Tsinghua-General Motors International Collaboration Project (Grant No. 20153000354). The authors also thank the National Laboratory for Information Science and Technology, Tsinghua University, for access to its supercomputing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Guo or Shoumei Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 13, 2019.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Du, J., Zhang, X. et al. Phase-Field Modeling of Microstructure Evolution in the Presence of Bubble During Solidification. Metall Mater Trans A 51, 1023–1037 (2020). https://doi.org/10.1007/s11661-019-05593-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05593-3

Navigation