Skip to main content
Log in

Dislocation Substructure Analysis in γ′-Precipitated Ni-Based Alloy by X-Ray Diffraction Combined with Positron Annihilation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The systematic changes in the dislocation density and characteristics of γ′-precipitated Ni-based model alloys that develop under cold rolling are studied as simulated deformations, to examine the fundamental dislocation behavior in terms of the dislocation substructure formation. In particular, the dislocation density is quantified through X-ray line profile analysis (XLPA), which is effective for quantifying the dislocation density and characteristics, as well as positron annihilation lifetime (PAL) measurements, which are sensitive to vacancy-type lattice defects. Similar tendencies are obtained for the strain dependency of the dislocation density analyzed using XLPA and PAL. Hence, the influence of the γ/γ′ coherent interface and γ′ precipitation on the dislocation substructure and vacancies is shown by comparing with a Ni-Cr solid solution. These results help to understand the interaction of solute atoms, vacancies, and dislocation with regard to substructure formation in Ni-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1. F.Masuyama: ISIJ Inter., 2001, vol. 41, pp. 612–625

    Article  Google Scholar 

  2. 2. D. A.Shifler: Mate. High Temp., 2018, vol.35, 225-235.

    Article  Google Scholar 

  3. 3. B.Gleeson, W.Wang, S.Hayashi, D.J.Sordelet: Mate. Sci. Forum, 2004, vol. 461-464, pp. 213-222.

    Article  Google Scholar 

  4. S. Zhao, X. Xie, G.D. Smith and S.J. Pate: Mater. Sci. Eng. A, 2003, vol. 355, pp. 96–105.

    Article  Google Scholar 

  5. 5. M. Maldini, G.Angella and V.Lupinc: Mater. Sci. Eng. A, 2007, vol.62, pp.436–440.

    Article  Google Scholar 

  6. 6. J.Klöwer, R.U.Husemann and M.Bader: Procedia Eng., 2013, vol.55, pp. 226-231.

    Article  Google Scholar 

  7. 7. Mohamed S. El-Genk, Jean-Michel Tournier: J. Nuclear Mater., 2005, vol.340, pp.93-112.

    Article  Google Scholar 

  8. 8. G.Kalinin, W.Gauster, R.Matera, A.-A.F.Tavassoli, A.Rowcliffe, S.Fabritsiev, H.Kawamura: J. Nucl. Mater.,1996, vol. 233–237, pp. 9-16.

    Article  Google Scholar 

  9. 9. P.Caron and T.Khan: Aero. Sci. Technol., 1999, vol.3, pp. 513-523.

    Article  Google Scholar 

  10. 10. R.Viswanathan, J.F.Henry, J.Tanzosh, G.Stanko, J.Shingledecker, B.Vitalis and P.Purgert: J. Mater. Eng. Peform., 2005, vol.14, pp.281–292.

    Article  Google Scholar 

  11. M. Fukuda, E. Saito, Y. Tanaka, T. Takahashi, S. Nakamura, J. Iwasaki, S. Takano and S. Izumi: Proc. 6th Int. Conf. on Advanced in Materials Technology for Fossil Power Plants, EPRI, California. 2010. pp. 325–41.

  12. 12. I.Aniekan, O.E.Kelly, G.Abdulsamad: Inter. J. Engin. Technol., 2017, vol.3, pp. 50-60.

    Google Scholar 

  13. M. Yonemura, H. Semba, and M. Igarashi: Metal. Mater. Trans. A, 2016, vol. 47A, pp. 1898-1905

    Article  Google Scholar 

  14. M. Yonemura and M. Mitsuhara: Philos. Magn., 2018, vol. 98, pp. 3247-3266.

    Article  Google Scholar 

  15. 15. J. Dundurs: J. Appl. Phys, 1968, vol. 39, pp. 4152-4156.

    Article  Google Scholar 

  16. 16. R. Lagneborg and B. Bergman: Metal Sci., 1976, vol. 10, pp. 20–28.

    Article  Google Scholar 

  17. 17. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1994, vol. 42, pp. 1859–1874.

    Article  Google Scholar 

  18. 18. M. Ingnat, J.-Y. Buffiere, and J.M. Chaix: Acta Metall. Mater., 1993, vol. 41, pp. 852–862.

    Google Scholar 

  19. A. Epishin and T. Link: Superalloys, 2004, pp. 137–43.

  20. 20. G.S. Ansell and J. Weertman: Trans. Metall. Soc. AIME., 1959, vol. 215, pp. 838–843.

    Google Scholar 

  21. 21. D. McLean: Metall. Rev., 1962, vol. 7, pp. 481–527.

    Google Scholar 

  22. 22. R.S.W. Shewfelt and L.M. Brown: Philos. Magn., 1977, vol. 35, pp. 945–962.

    Article  Google Scholar 

  23. K. R. Williams and S. B. Fisher: Radiat. Effect, 1973, vol. 25, pp. 97-103.

    Article  Google Scholar 

  24. 24. R.E. Stoltz and A.G. Pineau: Mater. Sci. Engin., 1978, vol.34, pp. 275-284

    Article  Google Scholar 

  25. 25. K.Edalati, D.Akama, A.Nishio, S.Lee, Y.Yonenaga, J.M. Cubero-Sesin and Z.Horita: Acta Mater., 2014, vol.69, pp. 68-77.

    Article  Google Scholar 

  26. 26. S.I.Rao, C.Woodward, T.A.Parthasarathy and O.Senkov: Acta Mater., 2017, vol.134, pp. 188-194.

    Article  Google Scholar 

  27. 27. S.Miyazaki and K. Otsuka: Metal. Trans. A, 1986, vol.17, pp. 53-63.

    Article  Google Scholar 

  28. 28. I.M. Robertson: Engin. Frac. Mech., 1999, vol.64, pp 649-673.

    Article  Google Scholar 

  29. 29. M.Yonemura and K.Inoue: Metall. Mater. Trans. A, 2016, vol. 47, pp. 6384-6393.

    Article  Google Scholar 

  30. 30. H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65-71.

    Article  Google Scholar 

  31. J. Ayache: in Replica Techniques, Sample Preparation Handbook for Transmission Electron Microscopy, Springer, 2010, pp 229–56.

  32. 32. G.K. Williamson and W.H. Hall: Acta Metal., 1953, vol. 1, pp. 22–31.

    Article  Google Scholar 

  33. 33. B.E. Warren and B.L. Averbach: J. Appl. Phys., 1950, vol. 21, pp. 595–599.

    Article  Google Scholar 

  34. 34. T. Ungár, A. Borbely: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–3175.

    Article  Google Scholar 

  35. H.P. Klug: X-Ray Diffraction Procedure, 2nd ed., Wiley, New York, 1902, p. 291.

    Google Scholar 

  36. 36. J. Martinez-Garcia, M. Leoni, and P. Scardi: Acta Cryst., 2009, vol. A65, pp. 109–119.

    Article  Google Scholar 

  37. 37. M.R.M. Garagh, S.H. Nedjad, H. Shirazi, M.I. Mobarekeh, and M.N. Ahmadabadi: Thin Solid Film, 2008, vol. 516, pp. 8117–8124.

    Article  Google Scholar 

  38. 38. C.S.Barrett: Imperfections in Nearly Perfect Crystals, John Wiley, New York, 1952.

    Google Scholar 

  39. 39. B.E.Warren: Progress in Metal Physics, 1959, vol. 8, pp. 147-202.

    Article  Google Scholar 

  40. 40. M.J.Puska and R.M.Nieminen: J. Phys. F, 1983, vol.13, pp.333-346.

    Article  Google Scholar 

  41. 41. W.H.Zimmer, S.S.Hecker, D.L.Rohr and L.E.Murr: Metal Sci., 1983, vol.17, pp.198-208.

    Article  Google Scholar 

  42. 42. D.A.Hughes and N.Hansen: Acta Mater., 2000, vol.48, pp.2985-3004.

    Article  Google Scholar 

  43. 43. Q.Liu, X.Huang, D.J.Lloyd and N.Hansen: Acta Mater., 2002, vol.50, pp.3789-3802.

    Article  Google Scholar 

  44. 44. T.Morikawa, T.Moronaga and K.Higashida: Tetsu-to-Hagané, 2005, vol.91, pp. 834-838.

    Article  Google Scholar 

  45. M. Blicharski and S. Gorczyca: Met.Sci., 1978, vol. 2, pp. 303–12.

  46. 46. C.Donadille, R.Valle, P.Dervin and R.Penelle: Acta Metall., 1989, vol.37, pp.1547-1571.

    Article  Google Scholar 

  47. 47. C.C.Bampton, I.P.Jones and M.H.Loretto: Acta Metall., 1978, vol.26, pp.39-51.

    Article  Google Scholar 

  48. 48. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  Google Scholar 

  49. 49. D.A. Hughes and N. Hansen: Metall. Trans., 1993, vol. 24A, pp. 2021–2037.

    Google Scholar 

  50. 50. A.S. Malin and M. Hatherly: Metal Sci., 1979, vol. 13, pp. 463–472.

    Article  Google Scholar 

  51. http://www.fjk-kk.co.jp/advantage/glossary/giplazma.html

  52. 52. T. E. M. Staab, R. Krause-Rehberg and B. Kieback: J. Mater. Sci., 1999, vol. 34, pp. 3833-3851.

    Article  Google Scholar 

  53. 53. H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, and M.Kiritani: Mater. Sci. Eng. A, 2003, vol. 350, pp. 95–101.

    Article  Google Scholar 

  54. 54. F.R.N. Nabarro and M.S. Duesbury: Dislocations in Solids, Elsevier, Amsterdam, 1989, pp. 507–587.

    Google Scholar 

  55. 55. V. Vitek: Philos. Magn., 2004, vol. 84, pp. 415–428.

    Article  Google Scholar 

  56. 56. P.S. Kotval and O.H. Nestor: Trans. Metall. Soc. AIME, 1969, vol. 245, art. no. 1275.

    Google Scholar 

  57. 57. M.Bernardin, A.Dupasquier, A.Gallone and P.Pizzi: Physica status solide, 1979, vol.56, pp.277-284.

    Article  Google Scholar 

  58. M. Igarashi, K. Moriguchi, S. Muneki, F. Abe and Y. Shirai: Mater. Sci. Forum, 2007, vol. 561-565, pp. 2233-36.

    Article  Google Scholar 

  59. 59. R. Schibli, R. Schaublin: J. Nucl. Mater., 2013, vol.442, pp.S761-S767.

    Article  Google Scholar 

  60. 60. M. Kiritani: Mater. Chem. Phys., 1997, vol.50, pp.133-138.

    Article  Google Scholar 

  61. 61. H. Wang, D.S. Xu, R. Yang, P. Veyssiere: Acta Mater., 2011, vol.59, 10-18.

    Article  Google Scholar 

  62. 62. R.Idczak, R.Konieczny and J.Chojcan: J.Appl.Phys., 2014, vol.115, art. no. 103513.

    Article  Google Scholar 

  63. 63. S.Schuwalow, J.Rogai and R.Drautz: J.Phys, 2014, vol. 26, art. no. 485014.

    Google Scholar 

  64. 64. X.Zhang, C.-L.Ren, H.Han, X.-X.Ye, E.Kuo, C.-B.Wangac, W.Zhang, L.Jiang, G.Lumpkin, P.Huai and Z.-Y.Zhu: RSC adv., 2017, vol.7, pp. 20567-20573.

    Article  Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to Mr. Masahiro Kinoshita of Nippon Steel Corporation as well as to Mr. Junro Takahashi and Mr. Tomoyuki Ueyama of Nippon Steel Technology Corporation for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuharu Yonemura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonemura, M., Inoue, K. Dislocation Substructure Analysis in γ′-Precipitated Ni-Based Alloy by X-Ray Diffraction Combined with Positron Annihilation. Metall Mater Trans A 50, 3201–3212 (2019). https://doi.org/10.1007/s11661-019-05228-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05228-7

Navigation