Skip to main content
Log in

Real-time X-ray Radiography and Computational Modeling of Shrinkage Porosity Formation in Aluminum Alloy Castings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation of shrinkage porosity in an A356 aluminum alloy wedge casting is investigated using real-time video radiography. An image processing technique is developed to quantify the amount of porosity observed in the video. The transient temperature field is obtained using casting simulation. The results show that initially, sinks develop in the low solid fraction regions on the surface of the wedge. Once the surface becomes sufficiently solid to be rigid, the subsequent solidification shrinkage is accommodated by internal porosity. The internal porosity is found to nucleate and grow in the central part of the wedge where the solid fraction is the lowest. A computational model is developed to predict the formation of the surface sinks and the internal porosity. The model is validated using the experimental measurements and a parametric study is performed to investigate the sensitivity of the predictions to changes in the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. J. Couper, A.E. Neeson, and J.R. Griffiths: Fatigue Fract. Eng. Mater. Struct., 1990, vol. 13, pp. 213-27.

    Article  Google Scholar 

  2. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.

    Article  Google Scholar 

  3. R.A. Hardin and C. Beckermann: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5316–32.

    Article  Google Scholar 

  4. T.S. Piwonka and M.C. Flemings: Trans. AIME, 1966, vol. 236, pp. 1157–65.

    Google Scholar 

  5. K. Kubo and R.D. Pehlke: Metall. Trans. B, 1985, vol. 16, pp. 359–66.

    Article  Google Scholar 

  6. C. Pequet, M. Gremaud, and M. Rappaz: Metall. Mater. Trans., 2002, vol. 33A, pp. 2095–16.

    Article  Google Scholar 

  7. K.D. Carlson, Z. Lin, R.A. Hardin, and C. Beckermann: 56th Steel Founders Society of America Technical and Operating Conference, Paper No. 4.4, Steel Founders’ Society of America, Chicago, IL, 2002.

  8. K.D. Carlson, Z. Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38 (4), pp. 541–55.

    Article  Google Scholar 

  9. K.D. Carlson and C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 163–75.

    Article  Google Scholar 

  10. A. Reis, Y. Houbaert, Z. Xu, R. Van Tol, A.D. Santos, J.F. Duarte, and A.B. Magalhaes, J. Mater. Process. Tech., 2008, vol. 202, pp. 428-434.

    Article  Google Scholar 

  11. A. Reis, Z. Xu, R.V. Tol, and R. Neto, J. Manuf. Process., 2012, vol. 14, pp. 1-7.

    Article  Google Scholar 

  12. Y. Awano, and K. Morimoto. Int. J. Cast Met. Res., 2004, vol. 17, pp. 107-114.

    Article  Google Scholar 

  13. P.D. Lee and J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155-4169.

    Article  Google Scholar 

  14. R.C. Atwood, S. Sridhar, W. Zhang, and P.D. Lee: Acta Mater., 2000, vol. 48, pp. 405-417.

    Article  Google Scholar 

  15. L. Arnberg and R. Mathiesen: JOM, 2007, vol. 59, pp. 20–26.

    Article  Google Scholar 

  16. JMatPro, Sente Software Ltd, Surrey Technology Center, Surrey GU2 7YG, United Kingdom.

  17. MAGMAsoft, MAGMA Gmbh, Aachen

  18. D. Emadi and L.V. Whiting: AFS Trans., 2002, 200, 33.

    Google Scholar 

  19. K.D. Carlson and C. Beckermann: Int. J. Cast Met. Res., 2012, vol. 25, pp. 75–92.

    Article  Google Scholar 

  20. S. Thompson, S. L. Cockcroft, and M. A. Wells: Mater. Sci. Tech., 2004, vol. 20, pp. 194-200.

    Article  Google Scholar 

  21. L. Arnberg, G. Chai, and L. Backerud: Mater. Sci. Engrg. A, 1993, vol. 173, pp. 101-03.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Anil Sachdev, Gene Tuohy, Mike Walker, and Jason Traub for their support of the foundry real-time X-ray room at GM R&D and the work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beckermann.

Additional information

Manuscript submitted August 24, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalajzadeh, V., Goettsch, D.D. & Beckermann, C. Real-time X-ray Radiography and Computational Modeling of Shrinkage Porosity Formation in Aluminum Alloy Castings. Metall Mater Trans A 50, 757–771 (2019). https://doi.org/10.1007/s11661-018-5018-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5018-0

Navigation