Skip to main content
Log in

Electrical Percolation and Aging of Gold Films

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electric transport in ultrathin metallic films can be either “percolative” or “conductive” depending on the links between the islands that constitute the film. Once the formation of long-range connections is established within the film, the overlayer reaches the so-called percolation threshold. This work describes a quantitative study of the electrical resistance of Au films, as a function of coverage. Film resistance displays a universal scaling law dependence with a critical exponent of 1.9 before percolation, which changes to 1.5 after percolation. These values are between the theoretical predictions for the evolution of growth as 2D or 3D systems. Results also indicate deposition parameters have a defining role in the evolution of the resistance during fabrication. A rise in pressure or deposition rate results in a lowering of the thicknesses at which percolation occurs. A decrease in the substrate temperature modified the typical resistance behavior of the Volmer–Weber growth mode to a trend of 2D growth mode. Finally, results describing the effect of film’s aging on the electrical resistance are presented. Aging is responsible for an important reduction in the film resistance after percolation, a process mainly mediated by material diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] Raul C. Munoz, and Claudio Arenas, Appl. Phys. Rev., 2017, vol. 4, 0111102.

    Article  Google Scholar 

  2. Sarah L. T. Jones, Alfonso Sanchez-Soares, John J. Plombon, Ananth P. Kaushik, Roger E. Nagle, James S. Clarke, and James C. Greer, Phys. Rev. B, 2015, vol. 92, 115413.

    Article  Google Scholar 

  3. [3] Luis Moraga, Claudio Arenas, Ricardo Henriquez, and Basilio Solis, Phys. Status Solidi B, 2015, 252, 219–229.

    Article  CAS  Google Scholar 

  4. [4] Weihuang Xue and Wenhua Gu, AIP Advances, 2016, vol. 6, 115001.

    Article  Google Scholar 

  5. www.itrs2.net.

  6. [6] Thorwald Andersson, J. Phys. D: Appl. Phys., 1976, vol. 9, 973.

    Article  CAS  Google Scholar 

  7. [7] G.B. Smith, A. I. Maaroof, and M. B. Cortie, Phys. Rev. B, 2008, vol. 78, 165418.

    Article  Google Scholar 

  8. [8] E.V. Barnat, D. Nagakura, P.-I. Wang, and T. -M. Lu, J. Appl. Phys., 2002, vol. 91, 1667-1672.

    Article  CAS  Google Scholar 

  9. [9] Ricardo Henriquez, Valeria Del Campo, Claudio Gonzalez-Fuentes, Jonathan Correa-Puerta, Luis Moraga, Marcos Flores, Rodrigo Segura, Sebastián Donoso, Francisca Marín, Sergio Bravo, and Patricio Häberle, Appl. Surf. Sci., 2017, vol. 407, 322–327.

    Article  CAS  Google Scholar 

  10. [10] I.M. Rycroft, B.L. Evans, Thin Solid Films, 1996, vol. 290-291, 283-288.

    Article  Google Scholar 

  11. [11] T. Andersson, J. Appl. Phys., 1976, vol. 47, 1752-56.

    Article  CAS  Google Scholar 

  12. [12] Stauffer D., Aharoni A. Introduction to percolation theory. London: Taylor and Francis; 1992.

    Google Scholar 

  13. [13] S. Bahamondes, S. Donoso, R. Henríquez, and M. Flores, Thin Solid Films, 2013, vol. 548, 646–649.

    Article  CAS  Google Scholar 

  14. Milton Ohring. Materials Science of Thin Films. Academic Press. Second Edition, 2002.

    Google Scholar 

  15. E. V. Barnat, D. Nagakura, and T.-M. Lu., Rev. Sci. Instrum., 2003, vol. 74, 3385.

    Article  CAS  Google Scholar 

  16. [16] L. Cheriet, H.H. Helbig, and S. Arajs, Phys. Rev. B, 1989, vol. 39, 9828.

    Article  CAS  Google Scholar 

  17. [17] A. I. Maaroof and B. L. Evans, J. Appl. Phys.,1994, vol. 76, 1047.

    Article  CAS  Google Scholar 

  18. [18]T. W. H. Oates, L. Ryves, and M. M. M. Bilek, Optics Express, 2007, vol. 15, 15987.

    Article  CAS  Google Scholar 

  19. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum., 2007, vol. 78, 013705.

    Article  CAS  Google Scholar 

  20. F. Ruffino, V. Torrisi, G. Marletta, and M.G. Grimaldi, Appl. Phys. A, 2010, vol.100., 7.

    Article  CAS  Google Scholar 

  21. [21] Shi Xu, B. L. Evans, David I. Flynn and Cao En, Thin Solid films, 1994, vol. 238, 54-61.

    Article  CAS  Google Scholar 

  22. [22] Xuefeng Wang, Kuo-ping Chen, Ming Zhao, and David D. Nolte, Optics Express, 1992, vol.18, 24859.

    Article  Google Scholar 

  23. [23] Shi Xu, B. L. Evans, Journal of Materials Science, 1992, vol. 27, 3108-3117.

    Article  CAS  Google Scholar 

  24. [24] M. Tomellini, J. Appl. Phys., 1992, vol. 72, 1589.

    Article  CAS  Google Scholar 

  25. [25] F. Ruffino and M.G. Grimaldi, J. Appl. Phys., 2010, vol. 107, 104321.

    Article  Google Scholar 

  26. [26] R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, Phys. Rev. Lett., 1982, vol. 49, 1441.

    Article  CAS  Google Scholar 

  27. [27] Stefan Wagner and Astrid Pundt, Phys. Rev. B, 2008, vol. 78, 155131.

    Article  Google Scholar 

  28. K.H. Youm and Sung-Ik Lee, Solid State Communication, 1991, vol. 79, 1069-72.

    Article  CAS  Google Scholar 

  29. [29]Y. Yagil and G. Deutscher, Phys. Rev. B, 1992, vol. 46, 16115.

    Article  CAS  Google Scholar 

  30. [30] M. Octavio, G. Gutierrez, and J. Aponte, Phys. Rev. B, 1987, vol. 36, 2461.

    Article  CAS  Google Scholar 

  31. [31] Qu-Quan Wang, Jun-Bo Hun, Sha Ding, Gui-Guang Xiong, De-Chen Tian, Appl. Surf. Sci., 2005, vol. 243, 329-334

    Article  CAS  Google Scholar 

  32. [32] W. Bauhofer and J. Z. Kovacs, Composites Science and technology, 2009, vol. 69, 1486-1498

    Article  CAS  Google Scholar 

  33. N. Nakamura, N. Yoshimura, H. Ogi, and M. Hirao, J. Appl. Phys., 2015, vol. 118, 085302.

    Article  Google Scholar 

  34. [34] J. Wu, Z. Wang, K. Wu, J. Zhang, C. Li, D. Yin, Thin Solid Films, 1997, vol. 295, 315-319.

    Article  CAS  Google Scholar 

  35. Eungsun Byon, Thomas W. H. Oates, and André Anders, Appl. Phys. Lett., 2003, vol. 82, 1634.

    Article  CAS  Google Scholar 

  36. [36] V. Sabayev, N. Croitoru, A. Inberg, and Y. Shacham-Diamand, Materials Chemistry and Physics, 2011, vol. 127, 214–219.

    Article  CAS  Google Scholar 

  37. [37] S. K. So, H. H. Fong, C. F. Yeung, and N. H. Cheung, Appl. Phys. Lett., 2010, vol. 77, 1099.

    Article  Google Scholar 

  38. [38] H. Fredriksson, B. Persson, and L. Yström, Physica Scripta, 1971, vol. 3, 169-174.

    Article  CAS  Google Scholar 

  39. [39] Seok-Kyun Song, Seok-Keun Koh, Deuk Yeon Lee, and Hong-Koo Baik, Jpn. J. Appl. Phys., 2004, vol. 43, L15.

    Article  CAS  Google Scholar 

  40. [40] S. Blacher, F. Brouers, P. Gadenne, and J. Lafait, Journal of Applied Physics, 1993, vol. 74, 207.

    Article  CAS  Google Scholar 

  41. [41] I G Higginbotham, R H Williams and A J McEvoy
, J. Phys. D: Appl. Phys., 1975, vol. 8, 1033.

    Article  CAS  Google Scholar 

  42. [42] Hugo K. Christenson and Neil H. Thomson, Surface Science Reports, 2016, vol. 71, 367–390.

    Article  CAS  Google Scholar 

  43. [43] N. Alshwawreh, M. Militzer, D. Bizzotto, and J. C. Kuo, Microelectronic Engineering 2012, vol. 95, 26-33.

    Article  CAS  Google Scholar 

  44. M. Pattabi, N. Suresh, S. M. Chaudhari, A. Banerjee, D. M. Phase, A. Gupta, K. Mohan Rao, Thin Solid Films, 1998, vol. 322, 340-43.

    Article  CAS  Google Scholar 

  45. [45] Kevin A. Peterlinz and R. Georgiadis, Langmuir, 1996, vol. 12, 4731-4740.

    Article  CAS  Google Scholar 

  46. [46] I. A. Gladskikh, M. G. Gushchin, and T. A. Vartanyan, Semiconductors, 2018, Vol. 52, 671–674.

    Article  CAS  Google Scholar 

  47. Merel J. Lefferts, Krishnan Murugappan, Chen Wu, and Martin R. Castell, Applied Physics Letters, 2018, vol. 112, 251602.

    Article  Google Scholar 

  48. [48] Rudolf Hrach, Dusan Novotný, and Stanislav Novák, Vacuum, 2018, vol. 149, 279-283.

    Article  CAS  Google Scholar 

  49. [49] S. V. Tomilin, V. N. Berzhansky, E. T. Milyukova, O. A. Tomilina, and A. S. Yanovsky, Physics of the solid state, 2018, vol. 60, 1255.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RH recognizes Professor Luis Moraga Jaramillo (now deceased) for his enlightening discussions on the subjects related to this article. This work was partially financed by Projects “Fondecyt de Iniciación n°11140787” and “Fondecyt nº 1181905.” P.H. and V. Del C. acknowledge support from “Fondecyt n°1171584.” S.B. acknowledges support from “Beca de doctorado de Conicyt nº 21150492.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Henriquez.

Additional information

Manuscript submitted June 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriquez, R., Bravo, S., Roco, R. et al. Electrical Percolation and Aging of Gold Films. Metall Mater Trans A 50, 493–503 (2019). https://doi.org/10.1007/s11661-018-4979-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4979-3

Navigation