Skip to main content
Log in

Corrosion and Fretting Corrosion Studies of Medical Grade CoCrMo Alloy in a Clinically Relevant Simulated Body Fluid Environment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In modular hip implants, fretting corrosion at the head/neck and neck/stem interfaces has been identified as a major cause of early revision in hip implants, particularly those with heads larger than 32 mm. It has been found that the type of fluid used to simulate the fretting corrosion of biomedical materials is crucial for the reliability of laboratory tests. Therefore, to properly understand and effectively design against fretting corrosion damage in modular hips, there is the need to replicate the human body environment as closely as possible during in vitro testing. In this work, corrosion and fretting corrosion behavior of CoCrMo in 0.14 M NaCl, phosphate buffered saline, and in a clinically relevant novel simulated body fluid was studied using a variety of electrochemical characterization techniques and tribological experiments. Electrochemical, spectroscopy and tribo-electrochemical techniques employed include Potentiodynamic polarization, Potentiostatic polarization, Electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, augur electron spectroscopy, inductively coupled plasma mass spectroscopy, and pin-on-disk wear simulation. The presence of phosphate ions in PBS accounted for the higher corrosion rate when compared with 0.14 M NaCl and the clinically relevant novel simulated body fluid. The low corrosion rates and the nature of the protective passive film formed in the clinically relevant simulated body fluid make it suitable for future corrosion and fretting corrosion studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. R. Knight, R. Aujla, and S. P. Biswas: Orthop. Rev. 2011, vol. 3, pp. 2–4.

    Article  Google Scholar 

  2. R. A. Antunes and M. C. L. de Oliveira: Acta Biomater., vol. 8, no. 3, pp. 937–62, Mar. 2012.

    Article  Google Scholar 

  3. H. Matusiewicz: Acta Biomater., 2014, vol. 10, No. 6, pp. 2379–03.

    Article  Google Scholar 

  4. M. Metikos-Huković, Z. Pilić, R. Babić, and D. Omanović, Acta Biomater., vol. 2, no. 6, pp. 693–700, Nov. 2006.

    Article  Google Scholar 

  5. R. Pourzal, I. Catelas, R. Theissmann, C. Kaddick, and A. Fischer: Wear, 2011, vol. 271, no. 9–10, pp. 1658–66.

    Article  Google Scholar 

  6. C. V. Vidal and A. I. Muñoz, Electrochim. Acta, vol. 54, no. 6, pp. 1798–09, Feb. 2009.

    Article  Google Scholar 

  7. F. Contu, B. Elsener, and H. Böhni, Corros. Sci., 2005, vol. 47, no. 8, pp. 1863–75.

    Article  Google Scholar 

  8. C. Valero Vidal and A. Igual Muñoz: Electrochim. Acta, 2011, vol. 56, no. 24, pp. 8239–48.

    Article  Google Scholar 

  9. A. Ouerd, C. Alemany-Dumont, B. Normand, and S. Szunerits, Electrochim. Acta, 2008, vol. 53, no. 13, pp. 4461–4469.

    Article  Google Scholar 

  10. A. I. Muñoz and S. Mischler, J. Electrochem. Soc., vol. 154, no. 10, p. C562, 2007.

    Article  Google Scholar 

  11. R. Sonntag, J. Reinders, and J. P. Kretzer, Acta Biomater., vol. 8, no. 7, pp. 2434–41, Jul. 2012.

    Article  Google Scholar 

  12. M. Haeri and J. L. Gilbert, Acta Biomater., vol. 9, no. 11, pp. 9220–28, 2013.

    Article  Google Scholar 

  13. Y. Yan, A. Neville, and D. Dowson, Wear, vol. 263, no. 7–12, pp. 1105–1111, 2007.

    Article  Google Scholar 

  14. C. ValeroVidal and A. IgualMuñoz: Corros. Sci., 2008, vol. 50, no. 7, pp. 1954–1961.

    Article  Google Scholar 

  15. S. Virtanen, I. Milosev, E. Gomez-Barrena, R. Trebse, J. Salo, and Y. T. Konttinen, Acta Biomater., vol. 4, no. 3, pp. 468–76, 2008.

    Article  Google Scholar 

  16. N. Diomidis, S. Mischler, N. S. More, and M. Roy, Acta Biomater., vol. 8, no. 2, pp. 852–9, 2012.

    Article  Google Scholar 

  17. M. Huber, G. Reinisch, G. Trettenhahn, K. Zweymüller, and F. Lintner:Acta Biomater., vol. 5, no. 1, pp. 172–80, 2009.

    Article  Google Scholar 

  18. L.E.S. Wong: The Effect of Lubricant Composition on the Wear Behaviour of Polyethylene for Orthopaedic Applications, University of Manitoba, 2013.

  19. J.-M. Brandt, L. K. Brière, J. Marr, S. J. MacDonald, R. B. Bourne, and J. B. Medley: J. Biomed. Mater. Res. A, vol. 94, no. 3, pp. 961–71, 2010.

    Google Scholar 

  20. J. Brandt: Wear and Boundary Lubrication in Modular Total Knee Replacements, University of Waterloo, 2008.

  21. L.E. Guenther, B.W. Pyle, T.R. Turgeon, E.R. Bohm, U.P. Wyss, T.A. Schmidt, and J.-M. Brandt: Proc. Inst. Mech. Eng. H., 2014, vol. 228, no. 2, pp. 127–39.

    Article  Google Scholar 

  22. A. C. Lewis and P. J. Heard: J. Biomed. Mater. Res. A, vol. 75, no. 2, pp. 365–73, 2005.

    Article  Google Scholar 

  23. A. Igual Muñoz and L. Casabán Julián: Electrochim. Acta, 2010, vol. 55, no. 19, pp. 5428–39.

    Article  Google Scholar 

  24. A. W. E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C.-O. A. Olsson, and S. Mischler: Electrochim. Acta, vol. 49, no. 13, pp. 2167–78, 2004.

    Article  Google Scholar 

  25. A.J. Hart, P.D. Quinn, B. Sampson, A. Sandison, K.D. Atkinson, J.A. Skinner, J.J. Powell, and J.F.W. Mosselmans: Acta Biomater., 2010, vol. 6, no. 11, pp. 4439–46.

    Article  Google Scholar 

  26. J. Hesketh, X. Hu, Y. Yan, D. Dowson, and A. Neville, “Biotribocorrosion: Some electrochemical observations from an instrumented hip joint simulator,” Tribol. Int., vol. 59, pp. 332–338, Mar. 2013.

    Article  Google Scholar 

  27. Y. Yan, A. Neville, D. Dowson, S. Williams, and J. Fisher: Wear, 2009, vol. 267, no. 5–8, pp. 683–688.

    Article  Google Scholar 

  28. D. Dowson and Z.-M. Jin, “Metal-on-metal hip joint tribology,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 220, no. 2, pp. 107–118, Jan. 2006.

    Article  Google Scholar 

  29. C.V. Vidal and A.I. Muñoz: Electrochim. Acta, 2010, vol. 55, no. 28, pp. 8445–52.

    Article  Google Scholar 

  30. P. E. Sinnett-Jones, J. A. Wharton, and R. J. K. Wood: Wear, vol. 259, no. 7–12, pp. 898–909, Jul. 2005.

    Article  Google Scholar 

  31. R. Büscher and A. Fischer: Wear, vol. 259, no. 7–12, pp. 887–897, 2005.

    Article  Google Scholar 

  32. R. Pourzal, R. Theissmann, S. Williams, B. Gleising, J. Fisher, and A. Fischer, J. Mech. Behav. Biomed. Mater., vol. 2, no. 2, pp. 186–91, 2009.

    Article  Google Scholar 

  33. M. Baxmann, S. Y. Jauch, C. Schilling, W. Blömer, T. M. Grupp, and M. M. Morlock: Med. Eng. Phys., 2013, vol. 35, no. 5, pp. 676–83, discussion 676.

    Article  Google Scholar 

  34. D. Shakhvorostov, B. Gleising, R. Büscher, W. Dudzinski, A. Fischer, and M. Scherge: Wear, vol. 263, no. 7–12, pp. 1259–1265, 2007.

    Article  Google Scholar 

  35. M. T. Mathew, J. J. Jacobs, and M. A. Wimmer: Clin. Orthop. Relat. Res., vol. 470, no. 11, pp. 3109–17, 2012.

    Article  Google Scholar 

  36. R. Pourzal, R. Theissmann, M. Morlock, and A. Fischer: Wear, 2009, vol. 267, pp. 689–94.

    Article  Google Scholar 

  37. G. Thorwarth, C. V Falub, U. Müller, B. Weisse, C. Voisard, M. Tobler, and R. Hauert: Acta Biomater., 2010, vol. 6, no. 6, pp. 2335–41.

    Article  Google Scholar 

  38. A. Fischer, Comput. Mater. Sci., vol. 46, no. 3, pp. 586–590, Sep. 2009.

    Article  Google Scholar 

  39. M. Scherge, J. M. Martin, and K. Pöhlmann: Wear, vol. 260, no. 4–5, pp. 458–461, 2006.

    Article  Google Scholar 

  40. M. Scherge: Wear, 2006, vol. 260, pp. 433–437.

    Article  Google Scholar 

  41. F. Billi, S. N. Sangiorgio, S. Aust, and E. Ebramzadeh: J. Biomech., vol. 43, no. 7, pp. 1310–15, 2010.

    Article  Google Scholar 

  42. I. Leslie, S. Williams, C. Brown, G. Isaac, Z. Jin, E. Ingham, and J. Fisher, J. Biomed. Mater. Res. B. Appl. Biomater., vol. 87, no. 1, pp. 163–72, 2008.

    Article  Google Scholar 

  43. A. Fischer, S. Weiss, and M. A. Wimmer: J. Mech. Behav. Biomed. Mater., vol. 9, pp. 50–62, 2012.

    Article  Google Scholar 

Download references

Acknowledgment

The financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

Compliance with Ethics Requirements

The authors declare that there is no conflict of interest in this work. This paper does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olanrewaju A. Ojo.

Additional information

Manuscript submitted July 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocran, E.K., Guenther, L.E., Brandt, JM. et al. Corrosion and Fretting Corrosion Studies of Medical Grade CoCrMo Alloy in a Clinically Relevant Simulated Body Fluid Environment. Metall Mater Trans A 46, 2696–2709 (2015). https://doi.org/10.1007/s11661-015-2834-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2834-3

Keywords

Navigation