Skip to main content
Log in

Evolution and Stability of a Nanocrystalline Cu3Ge Intermetallic Compound Fabricated by Means of High Energy Ball Milling and Annealing Processes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the structural evolution of two nanostructured Cu-22 wt pct Ge (Cu-20 at. pct Ge) and Cu-26 wt pct Ge (Cu-24 at. pct Ge) alloys upon mechanical alloying (MA) with subsequent heat treatment was investigated, and the phase transitions were monitored by means of various characterization methods. The findings indicated that, when the MA process continued for some time, a nanocrystalline α-Cu(Ge) solid solution was formed, which partially transformed into an amorphous phase. Further MA processing for 20 hours led to the formation of a disordered nanometric ε-Cu3Ge intermetallic compound with a monoclinic crystal structure. Increased milling time subsequently led to the diminishing of the content of the amorphous phase which transformed into ε-Cu3Ge nanocrystals. Clearly, a nanocrystallization transformation occurred upon ball milling principally on account of the accumulated energy due to the heavy mechanical deformation. Crystallization was also seen to occur at 473 K (200 °C) after annealing the MA-ed powders, leading to the formation of an ordered ε 1-Cu3Ge intermetallic phase with an orthorhombic structure. The crystallographic relationships between the two disordered and ordered intermetallic phases were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Das and T.L. Alford: Appl. Phys. Lett., 2013, vol. 103, pp. 094104 (4 pp).

  2. M.O. Aboelfotoh, M.A. Borek, and J. Narayan: J. Appl. Phys., 2000, vol. 87, pp. 365-68.

    Article  Google Scholar 

  3. L. Krusin-Elbaum and M.O. Aboelfotoh: Appl. Phys. Lett., 1991, vol. 58, pp. 1341-43.

    Article  Google Scholar 

  4. M.O. Aboelfotoh, K.N. Tu, F. Nava, and M. Michelini: J. Appl. Phys., 1994, vol. 75, pp. 1616-19.

    Article  Google Scholar 

  5. M.O. Aboelfotoh, C.L. Lin, and J.M. Woodall: Appl. Phys. Lett., 1994, vol. 65, pp. 3245-47.

    Article  Google Scholar 

  6. S.V. Meschel, J. Pavlu, and P. Nash: J. Alloys Compd., 2011, vol. 509, pp. 5256-62.

    Article  Google Scholar 

  7. K.A. Darling, R.K. Guduru, C.L. Reynolds Jr., V.M. Bhosle, R.N. Chan, R.O. Scattergood, C.C. Koch, J. Narayan, and M.O. Aboelfotoh: Intermetallics, 2008, vol. 16, pp. 378-83.

    Article  Google Scholar 

  8. X. Zhao, C. Wang, D. Wang, H. Hahn, and M. Fichtner: Electrochem. Commun., 2013, vol. 35, pp. 116-19.

    Article  Google Scholar 

  9. J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang: J. Mater. Chem., 2012, vol. 22, pp. 1511-15.

    Article  Google Scholar 

  10. Y. Hwa, C.M. Park, S. Yoon, and H.J. Sohn: Electrochim. Acta, 2010, vol. 55, pp. 3324-29.

    Article  Google Scholar 

  11. O.B. Chae, S. Park, J.H. Ku, J.H. Ryu, and S.M. Oh: Electrochim. Acta, 2010, vol. 55, pp. 2894-2900.

    Article  Google Scholar 

  12. G. Guizzetti, F. Marabelli, P. Pellegrino, A. Sassella, and M.O. Aboelfotoh: J. Appl. Phys., 1996, vol. 79, pp. 8115-17.

    Article  Google Scholar 

  13. B. Liu, L.W. Lin, D. Ren, Y.P. Zhang, G.H. Jiao, and K.W. Xu: J. Phys. D: Appl. Phys., 2013, vol. 46, pp. 155305 (6pp).

  14. 14.P. AntonyPremkumar, L. Carbonell, M. Schaekers, K. Opsomer, C. Adelmann, O. Richard, H. Bender, A. Franquet, J. Meersschaut, L. Wen, T. Zsolt, and S. Van Elshocht: Microelectron. Eng., 2014, vol. 120, pp. 246–50.

    Article  Google Scholar 

  15. T. Burchhart, A. Lugstein, Y.J. Hyun, G. Hochleitner, and E. Bertagnolli: Nano Lett., 2009, vol. 9, pp. 3739-42.

    Article  Google Scholar 

  16. H.K. Liou, J.S. Huang, and K.N. Tu: J. Appl. Phys., 1995, vol. 77, pp. 5443-45.

    Article  Google Scholar 

  17. M.O. Aboelfotoh and B.G. Svensson: Phys. Rev. B, 1991, vol. 44, pp. 12742-47.

    Article  Google Scholar 

  18. A.P. Peter, L. Carbonell, M. Schaekers, C. Adelmann, J. Meersschaut, A. Franquet, O. Richard, H. Bender, T. Zsolt, and S. Van Elshocht: Intermetallics, 2013, vol. 34, pp. 35-42.

    Article  Google Scholar 

  19. A. Joi, R. Akolkar, and U. Landau: Appl. Phys. Lett., 2013, vol. 102, pp. 134107 (4 pp).

  20. M.O. Aboelfotoh and H.M. Tawancy: J. Appl. Phys., 1994, vol. 75, pp. 2441-46.

    Article  Google Scholar 

  21. H.M. Tawancy and M.O. Aboelfotoh: J. Mater. Sci., 1995, vol. 30, pp. 6053-64.

    Article  Google Scholar 

  22. M. Nazarian-Samani, A.R. Kamali, and M. Nazarian-Samani: Powder Metall., 2014, vol. 57, pp. 119-26.

    Article  Google Scholar 

  23. M. Nazarian-Samani, R. Mobarra, A.R. Kamali, and M. Nazarian-Samani: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 510-21.

    Article  Google Scholar 

  24. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2001.

    Google Scholar 

  25. C. Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker, New York, 2004.

    Book  Google Scholar 

  26. S. Ruggeri, C. Lenain, L. Roué, G. Liang, J. Huot, and R. Schulz: J. Alloys Compd., 2002, vol. 339, pp. 195-201.

    Article  Google Scholar 

  27. M. Nazarian-Samani, H. Abdollah-Pour, O. Mirzaee, A.R. Kamali, and M. Nazarian-Samani: Intermetallics, 2013, vol. 38, pp. 80-87.

    Article  Google Scholar 

  28. Y.L. Gong, C.E. Wen, Y.C. Li, X.X. Wu, L.P. Cheng, X.C. Han, and X.K. Zhu: Mater. Sci. Eng. A, 2013, vol. 569, pp. 144-49.

    Article  Google Scholar 

  29. Y.L. Gong, C.E. Wen, X.X. Wu, S.Y. Ren, L.P. Cheng, and X.K. Zhu: Mater. Sci. Eng. A, 2013, vol. 583, pp. 199-204.

    Article  Google Scholar 

  30. S. Oktyabrsky, M.O. Aboelfotoh, J. Narayan, and J.M. Woodall: J. Electron. Mater., 1996, vol. 25, pp. 1662-72.

    Article  Google Scholar 

  31. C. Bansal, Z.Q. Gao, and B. Fultz: Nanostruct. Mater., 1995, vol. 5, pp. 327-36.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Asma Rezaei for her valuable contribution to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Nazarian-Samani.

Additional information

Manuscript submitted July 1, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarian-Samani, M., Kamali, A.R., Nazarian-Samani, M. et al. Evolution and Stability of a Nanocrystalline Cu3Ge Intermetallic Compound Fabricated by Means of High Energy Ball Milling and Annealing Processes. Metall Mater Trans A 46, 516–524 (2015). https://doi.org/10.1007/s11661-014-2637-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2637-y

Keywords

Navigation