Skip to main content

Advertisement

Log in

A 3rd Generation Advanced High-Strength Steel (AHSS) Produced by Dual Stabilization Heat Treatment (DSHT)

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A 3rd generation advanced high-strength steel containing, in wt pct, 0.3 C, 4.0 Mn, 1.5 Al, 2.1 Si, and 0.5 Cr has been produced using a dual stabilization heat treatment—a five stage thermal processing schedule compatible with continuous galvanized steel production. In excess of 30 vol pct retained austenite containing at least 0.80 wt pct C was achieved with this alloy, which had tensile strengths up to 1650 MPa and tensile elongations around 20 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Before XRD examination and tensile testing, all the heat treated samples had the outer 150 μm decarburized layer of their surfaces removed by etching with an aqueous solution containing 49 pct of 30 pct H2O2 and 2 pct of HF and annealed before testing at 453 K (180 °C) for 1 hour; this annealing was intended to eliminate any hydrogen introduced by the decarburization etching. An early stage of martensite tempering might also been involved during this annealing. In industrial practice involving large scale production of AHSS, decarburization would not be an issue. Furthermore, automotive steels are routinely heated to 453 K (180 °C) during final finishing.

References

  1. D.K. Matlock and J.G. Speer: in Microstructure and Texture in Steels, A. Haldar, S. Suwas, and D. Bhattacharjee, eds., Springer, London, 2009, p. 185.

  2. G.R. Chanani, V.F. Zackay, and E.R. Parker: Metall. Trans., 1971, vol. 2, pp. 133-139.

    Article  CAS  Google Scholar 

  3. R.L. Miller: Metall. Trans, 1972, vol. 3, pp. 905-912.

    Article  CAS  Google Scholar 

  4. T. Furukawa: Mater. Sci. Technol., 1989, vol. 5, pp. 465-470.

    Article  CAS  Google Scholar 

  5. A. Zarei Hanzaki, P.D. Hodgson, and S. Yue: Metall. Mater. Trans. A, 1997, vol. 28, p. 2405.

    Article  Google Scholar 

  6. P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag, and F. Delannay: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 475–79.

    Google Scholar 

  7. D.W. Suh, S.J. Park, C.H. Lee and S.J. Kim: Metall. Mater. Trans. A, 2009, vol. 40, pp. 264-268.

    Article  CAS  Google Scholar 

  8. S.J. Kim: Mater. Sci. Forum, 2010, vol. 638–642, pp. 3313-3318.

    Article  Google Scholar 

  9. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691–702.

    Article  Google Scholar 

  10. H.K.D.H. Bhadeshia, and D.V. Edmonds: Met. Sci., 1983, vol. 17, pp. 411-419.

    CAS  Google Scholar 

  11. J. Wang, and S. van der Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.

    Article  CAS  Google Scholar 

  12. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2009, vol. 57, pp. 533–43.

    Article  CAS  Google Scholar 

  13. A. Basuki, and E. Aernoudt: J. Mater. Process. Technol., 1999, vol. 89–90, pp. 37-43.

    Article  Google Scholar 

  14. S. van der Zwaag, L. Zhao, S.O. Kruijver, and J. Sietsma: ISIJ Int., 2002, vol. 42, pp. 1565–70.

    Article  Google Scholar 

  15. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  CAS  Google Scholar 

  16. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219-237.

    Article  CAS  Google Scholar 

  17. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 25–34.

    Google Scholar 

  18. A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915.

    Google Scholar 

  19. M. Hillert, L. Höglund, and J. Ågren: Acta Metall. et Mater., 1993, vol. 41, pp. 1951-1957.

    Article  CAS  Google Scholar 

  20. J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, and D.V. Edmonds: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3591–601.

    Article  Google Scholar 

  21. E. De Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee: Steel Res. Int., 2012, vol. 83, pp. 322–27.

    Article  Google Scholar 

  22. E.C. Bain, and H.W. Paxton: Alloying Elements in Steel, 2nd ed., American Society for Metals, Metals Park, 1966.

    Google Scholar 

  23. H.K.D.H. Bhadeshia, and D. V. Edmonds: Metall. Trans. A, 1979, vol. 10, pp. 895-907.

    CAS  Google Scholar 

  24. J.C. Russ: Practical Stereology, Plenum Press, New York, 1986.

    Book  Google Scholar 

  25. B.L. Averbach, and M. Cohen: Trans. AIME, 1948, vol. 176, pp. 401-415.

    Google Scholar 

  26. W.B. Pearson: Handbook of Lattice Spacings and Structures of Metals, Pergamon Press, Oxford, 1967.

    Google Scholar 

  27. H. Qu: Ph.D. Thesis, Case Western Reserve University, 2013.

  28. R.L. Klueh: Nucl. Eng. Des. Fusion, 1985, vol. 2, pp. 407-416.

    Article  CAS  Google Scholar 

Download references

We acknowledge financial support from the Department of Energy and the NSF CMMI through Grant No. 0727583. The DSHT approach to AHSS was the “brainchild” of our late colleague Gary M. Michal, whose untimely death occurred just weeks before his 59th birthday on 11 May, 2012; he will be sorely missed. Special thanks are extended to AK Steel Research Group for processing the laboratory induction air melted heat of steel used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur H. Heuer.

Additional information

Manuscript submitted March 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, H., Michal, G.M. & Heuer, A.H. A 3rd Generation Advanced High-Strength Steel (AHSS) Produced by Dual Stabilization Heat Treatment (DSHT). Metall Mater Trans A 44, 4450–4453 (2013). https://doi.org/10.1007/s11661-013-1871-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1871-z

Keywords

Navigation