Skip to main content
Log in

Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and properties of three different Al-Zn-Mg-Cu alloys with high Zn content (9 wt pct, 10 wt pct, and 11 wt pct, marked as 9Zn, 10Zn, and 11Zn, respectively) were investigated. The strength of alloys increases as the Zn content increases from 9 wt pct to 10 wt pct, while it does not increase any more as the Zn content increases continuously from 10 wt pct to 11 wt pct. The stress-corrosion cracking (SCC) resistance decreases as the Zn content increases from 9 wt pct to 10 wt pct, while it changes unobviously as the Zn content increases continuously from 10 wt pct to 11 wt pct. The elongation and fracture toughness of alloys decrease as the Zn content increases in these Al-Zn-Mg-Cu alloys. The Zn content has little effect on the precipitation reaction of Al-Zn-Mg-Cu alloys that contain the mixture of GP zones, and η′ are the main Matrix Precipitates (MPt) in the peak-aging state, and the mixture of η′ and η are the main MPt in the over-aging state. The amount of MPt and coarse T (AlZnMgCu) phases are shown to increase with the increasing Zn content in Al-Zn-Mg-Cu alloys. The coarse T phases hardly dissolve into the matrix and are the source for the crack initiation, which may be the responsibility for the negative effect on the properties of high Zn content Al-Zn-Mg-Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102-07.

    Article  Google Scholar 

  2. J.C. Williams and E. A. Starke: Acta Mater., 2003, vol. 51, pp. 5775-99.

    Article  CAS  Google Scholar 

  3. G. Sha and A. Cerezo: Acta Mater., 2004, vol. 52, pp. 4503-16.

    Article  CAS  Google Scholar 

  4. G.Waterloo, V. Hansen, J. Gjønnes, and S.R. Skjervold: Mater. Sci. Eng. A, 2001, vol. 303, pp. 226-33.

    Article  Google Scholar 

  5. T. Engdahl, V. Hansen, P.J. Warren, and K. Stiller: Mater. Sci. Eng. A, 2002, vol. 327, pp. 59-64.

    Article  Google Scholar 

  6. K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjønnes: Mater. Sci. Eng. A, 1999, vol. 270, pp. 55-63.

    Article  Google Scholar 

  7. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg: Acta Mater., 2001, vol. 49, pp. 3443-51.

    Article  CAS  Google Scholar 

  8. L.M. Wu, M. Seyring, M. Rettenmayr, and W.H. Wang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1068-73.

    Article  Google Scholar 

  9. X.Z. Li, V. Hansen, J. Gjønnes, and L.R. Wallenberg: Acta Mater., 1999, vol. 47, pp. 2651-59.

    Article  CAS  Google Scholar 

  10. S.K. Maloney, K. Hono, I.J. Polmear, and S.P. Ringer: Scripta Mater., 1999, vol. 41, pp. 1031-38.

    Article  CAS  Google Scholar 

  11. T.S. Srivatsan, S. Sriram, D. Veeraraghavan, and V.K. Vasudevan: J. Mater. Sci., 1997, vol. 32, pp. 2883-94.

    Article  CAS  Google Scholar 

  12. Q.H. Li: Light Met., 1980, vol. 3, pp. 36-43.

    Google Scholar 

  13. M.L. Gerard and E.L. David: Metall. Trans. A, 1981, vol. 12A, pp. 2083-91.

    Google Scholar 

  14. T. Marlaud, B. Baroux, A. Deschamps, J.L. Chemin, and C. Hénon: Mater. Sci. Forum, 2006, vol. 519-521, pp. 455-60.

    Article  Google Scholar 

  15. C.W. Lee, Y.H. Chung, K.K. Cho, and M.C. Shin: Mater. Des., 1997, Vol. 18, pp. 327-32.

    Article  CAS  Google Scholar 

  16. L. Wan, Y.L. Deng, Y.Y. Zhang, and X.M. Zhang: Chin. J. Nonferrous Met., 2010, vol. 20, pp. 1698-704.

    CAS  Google Scholar 

  17. Y.X. Li, P. Li, G. Zhao, X.T. Liu, and J.Z. Cui: Mater. Sci. Eng. A, 2005, vol. 397, pp. 204-08.

    Article  Google Scholar 

  18. K. Zhang, Z.Y. Liu, C.W. Ye, X.C. Xu, and O.C. Zhang: J. Cent. South Univ., 2004, vol. 02, pp. 191-94.

    Google Scholar 

  19. R. Gürbüz and S.P. Alpay: Scripta Metall. Mater., 1994, vol. 30, pp. 1373-76.

    Article  Google Scholar 

  20. Z. Cvijović, M. Rakin, M. Vratnica, and I. Cvijović: Eng. Fract. Mech., 2008, vol. 75, pp. 2115–29.

    Article  Google Scholar 

  21. H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, and K. Marthinsen: Mater. Sci. Eng. A, 2006, vol. 421, pp. 154-60.

    Article  Google Scholar 

  22. S. Iwamura and Y. Miura: Acta Mater., 2004, vol. 52, pp. 591-600.

    Article  CAS  Google Scholar 

  23. J. Adrien, E. Maire, R. Estevez, J.C. Ehrstrom, and T. Warenr: Acta Mater., 2004, vol. 52, pp. 1653-61.

    Article  CAS  Google Scholar 

  24. M.J. Starink and S.C. Wang: Acta Mater., 2003, vol. 51, pp. 5131-50.

    Article  CAS  Google Scholar 

  25. P. Sepehrband and S. Esmaeili: Mater. Sci. Eng. A, 2008, vol. 487, pp. 309-15.

    Article  Google Scholar 

  26. X.M. Li and M.J. Starink: Mater. Sci. Forum, 2000, vol. 331–337, pp. 1071-76.

    Article  Google Scholar 

  27. J. Buha, R.N. Lumley, and A.G. Crosky: Mater. Sci. Eng. A, 2008, vol. 492, pp. 1-10.

    Article  Google Scholar 

  28. O.N. Senkov, S.V. Senkova, and M.R. Shagiev: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1034-53.

    Article  CAS  Google Scholar 

  29. M. Dixit, R.S. Mishra, and K.K. Sankaran: Mater. Sci. Eng. A, 2008, vol. 478, pp. 163-72.

    Article  Google Scholar 

  30. E. Hornbogen and E.A. Starke: Acta Metall. Mater., 1993, vol. 41, pp. 1-16.

    Article  CAS  Google Scholar 

  31. N.U. Deshpande, A.M. Gokhale, D.K. Denzer, and J. Liu: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1191-201.

    Article  CAS  Google Scholar 

  32. M.J. Starink and X.M. Li: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 899-911.

    Article  CAS  Google Scholar 

  33. R.C. Dorward: Mater. Sci. Technol., 1999, vol. 15, pp. 1133-38.

    Article  CAS  Google Scholar 

  34. P. Guyot and L. Cottignies: Acta Mater., 1996, vol. 44, pp. 4161-67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The current study was supported by the key project of Beijing Education Commission: “Forming Mechanism of Atom Clusters and Precipitation Mechanism of Nano-Strengthening Precipitates in Super High Strength Aluminum Alloys” (JB009011201201), and the sub-project of the National Basic Research Program of China (973 Program): “Design of the composition and microstructure of aluminum alloys with high strength and high damage resistance” (2A009011201201). The authors would like to thank Z.X. Yu, R.Y. Zhang, and H. Huang for their help during some experiments. G. Nie and K.M. Zhang are thanked for checking the above article and having some fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyong Chen.

Additional information

Manuscript submitted February 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Mo, Y. & Nie, Z. Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys. Metall Mater Trans A 44, 3910–3920 (2013). https://doi.org/10.1007/s11661-013-1731-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1731-x

Keywords

Navigation