Skip to main content
Log in

Strengthening Mechanisms and Their Relative Contributions to the Yield Strength of Microalloyed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microalloyed steels are used widely in oil and gas pipelines. They are a class of high-strength, low-carbon steels that contain small additions (in amounts less than 0.1 wt pct) of Nb, Ti, and/or V. The steels may contain other alloying elements, such as Mo, in amounts exceeding 0.1 wt pct. Precipitation in these steels can be controlled through thermomechanical-controlled processing, leading to precipitates with sizes that range from several microns to a few nanometers. Microalloyed steels have good strength, good toughness, and excellent weldability, which are attributed in part to the presence of the nanosized carbide and carbonitride precipitates. Because of their fine sizes, wide particle size distribution, and low volume fractions, conventional microscopic methods are not satisfactory for quantifying these precipitates. Matrix dissolution is a promising alternative to extract the precipitates for quantification. Relatively large volumes of material can be analyzed so that statistically significant quantities of precipitates of different sizes are collected. In this article, the microstructure features of a series of microalloyed steels (X70, X80, and X100) as well as a Grade 100 steel are characterized using optical microscopy (OM) and scanning electron microscopy (SEM). A chemical dissolution technique is used to extract the precipitates from the steels. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are combined to analyze the chemical composition of these precipitates. Rietveld refinement of the XRD patterns is used to quantify fully the relative amounts of these precipitates. The size distribution of the nanosized precipitates is quantified using dark-field imaging (DF) in the TEM. The effects of microalloying content, finish rolling temperature (FRT), and coiling temperature (CT)/interrupted cooling temperature (ICT) on the grain size and the amount of nanoprecipitation are discussed. Individual strengthening contributions from grain size effects, solid-solution strengthening, and precipitation strengthening are quantified to understand fully the strengthening mechanisms for these steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. D. Bai, M.A. Cooke, J. Asante, and J. Dorricott: Patent U.S. 6,682,613 B2, 2004.

  2. S. Wolf: JOM, 1967, vol. 19, pp. 22–8.

    Google Scholar 

  3. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, U.K., 1997.

  4. J. Lu: Ph.D. Dissertation, University of Alberta, Alberta, Canada, 2009.

  5. A.J. DeArdo: Int. Mater. Rev., 2003, vol. 48, no. 6, pp. 371–402.

    Article  CAS  Google Scholar 

  6. S. Akhlaghi and D.G. Ivey: Can. Metall. Q., 2002, vol. 41, no. 1, pp. 111–9.

    Article  CAS  Google Scholar 

  7. Z. Guo and W. Sha: Mater. Sci. Eng. A, 2005, vol. 392, pp. 449–52.

    Article  Google Scholar 

  8. O. Prat, J. Garcia, D. Rojas, C. Carrasco, and A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2010, vol. 572, pp. 5976–83.

    Google Scholar 

  9. N. Zavaleta Gutierrez, H. De Cicco, J. Marrero, C.A. Danon, and M.I. Luppo: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4019–29.

    Article  Google Scholar 

  10. J. Lu, J.B. Wiskel, O. Omotoso, H. Henein, and D.G. Ivey: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1767–84.

    Article  Google Scholar 

  11. Internal information, EVRAZ Inc. NA, Regina, Saskatchewan, Canada, September 2008.

  12. H.M. Rietveld: Acta Crystallogr., 1967, vol. 22, pp. 151–2.

    Article  CAS  Google Scholar 

  13. H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  14. J.R. Hill and C.J. Howard: J. Appl. Crystallogr., 1987, vol. 20, pp. 467–74.

    Article  CAS  Google Scholar 

  15. K. Poorhaydari-Anaraki: Ph.D. Dissertation, University of Alberta, Alberta, Canada, 2005.

  16. K.E. Easterling: Introduction to the Physical Metallurgy of Welding, Butterworth-Heinemann Ltd, Oxford, U.K., 1992, p. 139.

    Google Scholar 

  17. International Center for Diffraction Data (ICDD) database: PDF#00-039-1425, PDF#00-038-1420, PDF#00-032-1383, PDF#00-038-1155, and PDF#00-038-1364.

  18. W.D. Callister: Materials Science and Engineering: An Introduction, 5th ed., Wiley, New York, NY, 2000, p. 37.

    Google Scholar 

  19. V.B. Ginzburg: Metallurgical Design of Flat Rolled Steels, Marcel Dekker Inc., New York, NY, 2005.

    Google Scholar 

  20. M. Kutz: Handbook of Materials Selection, Wiley, New York, NY, 2002, p. 44.

    Book  Google Scholar 

  21. D.T. Llewellyn and R.C. Hudd: Steels: Metallurgy & Applications, Reed Educational and Professional Publishing Ltd, Oxford, U.K., 1998.

    Google Scholar 

  22. J. Heslop and N.J. Petch: Phil. Mag., 1957, vol. 2, no. 17, pp. 649–58.

    Article  CAS  Google Scholar 

  23. F.B. Pickering and T. Gladman: Iron and Steel Institute, Special report no. 81, 1963, p. 10.

  24. P. Buessler, P. Maugis, and O. Bouaziz: 44 th Mechanical Working and Steel Processing Conf. Proc.: 8 th Int. Rolling Conf. and Int. Symp. on Zinc-Coated Steels, Iron and Steel Society of AIME, 2002, pp. 1105–16.

  25. E. Nembach: Acta Metall. Mater., 1992, vol. 40, no. 12, pp. 3325–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and Evraz Inc. NA for financial support. Provision of experimental materials by Evraz Inc. NA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Ivey.

Additional information

Manuscript submitted June 16, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Omotoso, O., Wiskel, J.B. et al. Strengthening Mechanisms and Their Relative Contributions to the Yield Strength of Microalloyed Steels. Metall Mater Trans A 43, 3043–3061 (2012). https://doi.org/10.1007/s11661-012-1135-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1135-3

Keywords

Navigation