Skip to main content
Log in

Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

empirical coefficient for turbulence collision

\( c_{\text{M}} ,\,c_{\text{P}} \) :

lattice parameter of the matrix and precipitate phase (m)

\( c_{\text{M}}^{e} ,\,c_{\text{P}}^{e} \) :

nearest-neighbor distance across the interface for matrix and precipitate phase (m)

\( f \) :

transformed fraction in phase transformation

\( f_{\text{P}} \) :

particle (or mass) fraction precipitated (relative to 100pct at zero dissolved)

\( i_{\text{M}} \) :

number of pseudomolecules for the largest agglomerated particle in simulation

\( m_{j} \) :

number of pseudomolecules contained in PSG volume V j

\( m_{j - 1,j} \) :

number of pseudomolecules contained in PSG threshold volume V j–1,j

\( n \) :

Avrami exponent in KJMA model

\( n_{0} \) :

initial total number density of single pseudomolecules for collision problem (# m–3)

\( n_{{1,{\text{eq}}}} \) :

equilibrium concentration of dissolved single pseudomolecules for diffusion problem (# m–3)

\( n_{1i} \) :

equilibrium concentration of single pseudomolecules at surface of size i particles (# m–3)

\( n_{i} \) :

number density of size i particles (# m–3)

\( n_{\text{p}} \) :

total number density of precipitate particles (# m–3)

\( n_{s} \) :

released number density of single pseudomolecules for diffusion problem (# m–3)

\( n_{j}^{C} \) :

number density of particles at the center of size group j (# m–3)

\( n_{j}^{L} \) :

number density of border particles, representing the smallest particles in size group j (# m–3)

\( n_{j}^{R} \) :

number density of border particles, representing the largest particles in size group j (# m–3)

\( r_{i} \,,\,r_{j} \) :

characteristic radius of size i particles, or size group j particles (m)

\( r_{j - 1,j} \) :

threshold radius to separate size group j − 1 and size group j particles in PSG method (m)

\( r_{c} \) :

the critical radius for nucleation (m)

\( \bar{r}_{\text{P}} \) :

average precipitate particle size (m)

\( t \) :

time (s)

Δt :

time step size in numerical computation (s)

\( w_{\text{P}}^{e} \) :

equilibrium mass concentration of precipitate phase (wt pct)

\( A_{i} ,\,A_{j} \) :

the surface area of size i particles, or size group j particles (m2)

\( A_{\text{M}} \) :

atomic mass unit of element M (g mol–1)

\( D \) :

diffusion coefficient of the precipitation in the parent phase (m2 s–1)

\( D_{f} \) :

fractal dimension for precipitate morphology

\( G_{M} \) :

number of size groups for the largest agglomerated particle in PSG method

\( G_{T} \) :

truncating size group in PSG method to match experimental resolution

\( K \) :

rate function for nucleation and growth in KJMA model

\( M_{0} \) :

total mass concentration of alloying element M in the steel composition (wt pct)

\( [M] \) :

equilibrium mass concentration of alloying element M (wtpct)

\( N_{j} \) :

total number density of size group j particles in PSG method (# m−3)

\( N_{\text{A}} \) :

Avogadro number (6.022 × 1023 # mol–1)

\( N_{M} \) :

total number density of pseudomolecules (# m–3)

\( N_{s} \) :

number of atoms per unit area across the interface (# m–2)

\( N_{\text{T}} \) :

total number density of all particles (# m–3)

\( {\text{R}}_{\text{g}} \) :

gas constant (8.314 J K–1 mol–1)

\( R_{\text{V}} \) :

particle volume ratio between two neighboring particle size groups

\( T \) :

absolute temperature (K)

\( V_{i} ,\,V_{j} \) :

characteristic volume of size i particles or size group j particles (m3)

\( V_{j - 1,j} \) :

threshold volume to separate size group j – 1 and size group j particles in PSG method (m3)

\( V_{\text{P}} \) :

molar volume of precipitated phase (m3 mol–1)

\( X_{\text{M}} ,\;X_{\text{P}} \) :

molar concentration of precipitate-forming element in matrix and precipitate phases

\( Z_{s} \) :

number of bonds per atom across the interface

\( Z_{l} \) :

coordinate number of nearest neighbors within the crystal lattice

\( \alpha_{i} \) :

dissociation rate of size i particles (m2 s–1)

\( \beta_{i} \) :

diffusion growth rate of size i particles (m3 #–1 s–1)

\( \delta \) :

relative lattice misfit across the interface between pairs of precipitate and matrix atoms

\( \delta_{i,k} \) :

Kronecker’s delta function (δ i,k = 1 for i = k, δ i,k = 0 for ik)

\( \varepsilon \) :

turbulent energy dissipation rate (m2 s–3)

\( \mu_{\text{M}} ,\,\mu_{\text{P}} ,\,\mu_{\text{I}} \) :

shear modulus of the matrix, precipitate phase, and interface (Pa)

\( \nu_{\text{M}} ,\,\nu_{\text{P}} \) :

Poisson’s ratio of the matrix and precipitate phases

\( \rho_{\text{steel}} ,\,\rho_{\text{p}} \) :

density of steel matrix and precipitate phase (kg m–3)

\( \sigma \) :

interfacial energy between precipitated particle/matrix (J m–2)

\( \sigma_{c} \) :

chemical interfacial energy between precipitated particle/matrix (J m–2)

\( \sigma_{\text{st}} \) :

structural interfacial energy between precipitated particle/matrix (J m–2)

\( \upsilon \) :

kinematic viscosity (m2 s–1)

\( \varphi_{P} \) :

volume fraction of precipitate phase

\( \Upphi_{i,k} \) :

collision frequency between size i and size k particles (m3 #−1 s–1)

Π:

supersaturation

\( \Updelta E_{0} \) :

heat of solution of precipitate in a dilute solution of matrix (J mol–1)

\( \Updelta G_{V} \) :

change of Gibbs free energy per unit volume during precipitation (J m–3)

\( \Updelta H \) :

heat of formation of precipitate (J mol–1)

\( * \) :

dimensionless value

\( - \) :

average value

L, R, C:

left, right border-size, and center-size particles in each size group

\( {\text{ceil}}(x) \) :

the smallest integer which is not less than real number \( x \)

\( {\text{floor}}(x) \) :

the largest integer which is not larger than real number \( x \)

References

  1. C. Zener: Trans. Am. Inst. Miner. Metall. Soc., 1948, vol. 175, pp. 15-51.

    Google Scholar 

  2. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227-38.

    Article  CAS  Google Scholar 

  3. T. Gladman: Proc. Roy. Soc. London Ser. A, 1966, vol. 294, pp. 298-309.

    Article  CAS  Google Scholar 

  4. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913-24.

    Article  CAS  Google Scholar 

  5. N. Yoshinaga, K. Ushioda, S. Akamatsu, and O. Akisue: ISIJ Int., 1994, vol. 34, pp. 24-32.

    Article  CAS  Google Scholar 

  6. E.E. Kashif, K. Asakura, T. Koseki, and K. Shibata: ISIJ Int., 2004, vol. 44, pp. 1568-75.

    Article  Google Scholar 

  7. S.C. Park, I.H. Jung, K.S. OH, and H.G. Lee: ISIJ Int., 2004, vol. 44, pp. 1016-23.

    Article  CAS  Google Scholar 

  8. Y. Li, J.A. Wilson, D.N. Crowther, P.S. Mitchell, A.J. Craven, and T.N. Baker: ISIJ Int., 2004, vol. 44, pp. 1093-1102.

    Article  CAS  Google Scholar 

  9. R.L. Klueh, K. Shiba, and M.A. Sokolov: J. Nucl. Mater., 2008, vol. 377, pp. 427-37.

    Article  CAS  Google Scholar 

  10. J.Y. Choi, B.S. Seong, S.C. Baik, and H.C. Lee: ISIJ Int., 2002, vol. 42, pp. 889-93.

    Article  CAS  Google Scholar 

  11. B.J. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2423-39.

    Article  CAS  Google Scholar 

  12. R.C. Hudd, A. Jones, and M.N. Kale: J. Iron Steel Inst., 1971, vol. 209, pp. 121-25.

    CAS  Google Scholar 

  13. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, UK, 1997, pp. 82-130.

    Google Scholar 

  14. W.J. Liu and J.J. Jonas: Metall. Trans. A, 1989, vol. 20A, pp. 1361-74.

    CAS  Google Scholar 

  15. N. Gao and T.N. Baker: ISIJ Int., 1997, vol. 37, pp. 596-604.

    Article  CAS  Google Scholar 

  16. J.Y. Park, J.K. Park, and W.Y. Choo: ISIJ Int., 2000, vol. 40, pp. 1253-59.

    Article  CAS  Google Scholar 

  17. K. Xu, B.G. Thomas, and R. O’Malley: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 524-39.

    Article  Google Scholar 

  18. A.N. Kolmogorov: Izv. Akad. Nauk SSSR, Ser. Fiz., 1937, vol. 1, pp. 335-38.

    Google Scholar 

  19. W.A. Johnson and R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416-42.

    Google Scholar 

  20. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12; 1940, vol. 8, pp. 212-24; 1941, vol. 9, pp. 177-83.

    Article  CAS  Google Scholar 

  21. J.W. Christian: The Theory of Transformation in Metals and Alloys. Part I, Pergamon Press, Oxford, UK, 1975.

    Google Scholar 

  22. N.Y. Zolotorevsky, V.P. Pletenev, and Y.F. Titovets: Model. Simul. Mater. Sci. Eng., 1998, vol. 6, pp. 383-91.

    Article  CAS  Google Scholar 

  23. H.C. Kang, S.H. Lee, D.H. Shin, K.J. Lee, S.J. Kim, and K.S. Lee: Mater. Sci. Forum, 2004, vols. 449-452, pp. 49-52.

    Article  CAS  Google Scholar 

  24. M. Smoluchowski: Z. Phys. Chem., 1917, vol. 92, pp. 127-55.

    Google Scholar 

  25. P.G. Saffman and J.S. Turner: J. Fluid Mech., 1956, vol. 1, pp. 16-30.

    Article  Google Scholar 

  26. U. Lindborg and K. Torssell: Trans. TMS-AIME, 1968, vol. 242, pp. 94-102.

    CAS  Google Scholar 

  27. S.K. Friedlander and C.S. Wang: J. Colloid Interface Sci., 1966, vol. 22, pp. 126-32.

    Article  CAS  Google Scholar 

  28. V.G. Levich: Physicochemical Hydrodynamics, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962, pp. 211.

    Google Scholar 

  29. D. Turnbull and J.C. Fisher: J. Chem. Phys., 1949, vol. 17, pp. 71-73.

    Article  CAS  Google Scholar 

  30. W.J. Liu and J.J. Jonas: Metall. Trans. A, 1989, vol. 20A, pp. 689-97.

    CAS  Google Scholar 

  31. W.J. Liu and J.J. Jonas: Metall. Trans. A, 1988, vol. 19A, pp. 1403-13.

    CAS  Google Scholar 

  32. W. Ostwald: Lehrbruck der allgemeinen Chemie, 1896, vol. 2, Leipzig, Germany.

  33. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  34. C. Wagner: Zeitschrift Zeitschr. Elektrochemie, 1961, vol. 65, pp. 581-91.

    CAS  Google Scholar 

  35. C. Zener: J. Appl. Phys., 1949, vol. 20, pp. 950-53.

    Article  CAS  Google Scholar 

  36. K.C. Russell: Adv. Colloid Interface Sci., 1980, vol. 13, pp. 205-318.

    Article  CAS  Google Scholar 

  37. H.I. Aaronson, L. Laird, and K.R. Kinsman: Phase Transformations, Ed. H.I. Aaronson, ASM, Materials Park, OH, 1970, pp. 313-96.

    Google Scholar 

  38. M. Kahlweit: Adv. Colloid Interface Sci., 1975, vol. 5, pp. 1-35.

    Article  CAS  Google Scholar 

  39. J. Miyake and M.E. Fine: Scripta Metall. Mater., 1991, vol. 25, pp. 191-94.

    Article  CAS  Google Scholar 

  40. R. Kampmann, H. Eckerlebe, and R. Wagner: Mater. Res. Soc. Symp. Proc., 1987, vol. 57, pp. 526-42.

    Google Scholar 

  41. L.M. Cheng, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1907-16.

    Article  CAS  Google Scholar 

  42. F. Perrard, A. Deschamps, and P. Maugis: Acta Mater., 2007, vol. 55, pp. 1255-66.

    Article  CAS  Google Scholar 

  43. J. Stávek and M. Šípek: Cryst. Res. Technol., 1995, vol. 30, pp. 1033-49.

    Article  Google Scholar 

  44. S. Müller, C. Wolverton, L.W. Wang, and A. Zunger: Europhys. Lett., 2001, vol. 55, pp. 33-39.

    Article  Google Scholar 

  45. E. Clouet, M. Nastar, and C. Sigli: Phys. Rev. B, 2004, vol. 69, p. 064109.

    Article  Google Scholar 

  46. C. Hin, B.D. Wirth, and J.B. Neaton: Phys. Rev. B, 2009, vol. 80, p. 134118.

    Article  Google Scholar 

  47. R. Mukherjee, T.A. Abinandanan, and M.P. Gururajan: Acta Mater., 2009, vol. 57, pp. 3947-54.

    Article  CAS  Google Scholar 

  48. R. Mukherjee, T.A. Abinandanan, and M.P. Gururajan: Scripta Mater., 2010, vol. 62, pp. 85-88.

    Article  CAS  Google Scholar 

  49. Y. Tsukada, A. Shiraki, Y. Murata, S. Takaya, T. Koyama, and M. Morinaga: J. Nucl. Mater., 2010, vol. 401, pp. 154-58.

    Article  CAS  Google Scholar 

  50. J. Svoboda, F.D. Fischer, P. Fratzl, and E. Kozeschnik: Mater. Sci. Eng. A, 2004, vol. 385, pp. 166-74.

    Google Scholar 

  51. E. Hozeschnik, J. Svoboda, P. Fratzl, and F.D. Fischer: Mater. Sci. Eng. A, 2004, vol. 385, pp. 157-65.

    Google Scholar 

  52. E. Kozeschnik, J. Svoboda, R. Radis, and F.D. Fischer: Model. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 015011.

    Article  Google Scholar 

  53. E. Clouet, A. Barby, L. Laé, and G. Martin: Acta Mater., 2005, vol. 52, pp. 2313-25.

    Article  Google Scholar 

  54. J. Lepinoux: Acta Mater., 2009, vol. 57, pp. 1086-94.

    Article  CAS  Google Scholar 

  55. J. Lepinoux: Philos. Mag., 2010, vol. 90, pp. 3261-80.

    Article  CAS  Google Scholar 

  56. L. Kampmann and M. Kahlweit: Ber. Bunsenges. Phys. Chem., 1970, vol. 74, pp. 456-62.

    CAS  Google Scholar 

  57. J. Zhang and H. Lee: ISIJ Int., 2004, vol. 44, pp. 1629-38.

    Article  CAS  Google Scholar 

  58. Y.J. Kwon, J. Zhang, and H.G. Lee: ISIJ Int., 2008, vol. 48, pp. 891-900.

    Article  CAS  Google Scholar 

  59. N. Zhang and Z.C. Zheng: J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 2603-12.

    Article  CAS  Google Scholar 

  60. Y. Miki, B.G. Thomas, A. Denissov, and Y. Shimada: Ironmaker Steelmaker, 1997, vol. 24, pp. 31-38.

    CAS  Google Scholar 

  61. Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 639-54.

    Article  CAS  Google Scholar 

  62. L. Zhang, S. Tanighchi, and K. Cai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 253-66.

    Article  CAS  Google Scholar 

  63. D. Sheng, M. Söder, P. Jönsson, and L. Jonsson: Scand. J. Metall., 2002, vol. 31, pp. 134-47.

    Article  CAS  Google Scholar 

  64. M. Hallberg, P.G. Jönsson, T.L.I. Jonsson, and R. Eriksson: Scand. J. Metall., 2005, vol. 34, pp. 41-56.

    Article  CAS  Google Scholar 

  65. T. Nakaoka, S. Taniguchi, K. Matsumoto, and S.T. Johansen: ISIJ Int., 2001, vol. 41, pp. 1103-11.

    Article  CAS  Google Scholar 

  66. L. Zhang and W. Pluschkell: Ironmaking Steelmaking, 2003, vol. 30, pp. 106-10.

    Article  CAS  Google Scholar 

  67. F. Gelbard, Y. Tambour, and J.H. Seinfeld: J. Colloid Interface Sci., 1980, vol. 76, pp. 541-56.

    Article  CAS  Google Scholar 

  68. J.J. Wu and R.C. Flagan: J. Colloid Interface Sci., 1988, vol. 123, pp. 339-52.

    Article  CAS  Google Scholar 

  69. H. Tozawa, Y. Kato, K. Sorimachi, and T. Nakanishi: ISIJ Int., 1999, vol. 39, pp. 426-34.

    Article  CAS  Google Scholar 

  70. K. Higashitani, Y. Yamauchi, Y. Matsuno, and G. Hosokawa: J. Chem. Eng. Jpn., 1983, vol. 116, pp. 299-304.

    Article  Google Scholar 

  71. F. Vodopivec: J. Iron Steel Inst., 1973, vol. 211, pp. 664-65.

    CAS  Google Scholar 

  72. H.F. Beeghly: Ind. Eng. Chem., 1942, vol. 14, pp. 137-40.

    CAS  Google Scholar 

  73. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, UK, 1997, pp. 206-07.

    Google Scholar 

  74. H. Oikawa: Tetsu-to-Hagane, 1982, vol. 68, pp. 1489-97.

    CAS  Google Scholar 

  75. W.C. Leslie, R.L. Rickett, C.L. Dotson, and C.S. Walton: Trans. Am. Soc. Metall., 1954, vol. 46, pp. 1470-99.

    Google Scholar 

  76. F.G. Wilson and T. Gladman: Int. Mater. Rev., 1988, vol. 33, pp. 221-86.

    Article  CAS  Google Scholar 

  77. R. Radis and E. Kozeschnik: Mater. Sci. Forum, 2010, vols. 636–637, pp. 605–11.

  78. R. Radis and E. Kozeschnik: Model. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 055003.

    Article  Google Scholar 

  79. F. Perrard, A. Deschamps, F. Bley, P. Donnadieu, and P. Maugis: J. Appl. Crystallogr., 2006, vol. 39, pp. 473-82.

    Article  CAS  Google Scholar 

  80. J. Geise and C. Herzig: Z. Metallkd, 1985, vol. 76, pp. 622-26.

    CAS  Google Scholar 

  81. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, UK, 1997, pp. 82-130.

    Google Scholar 

  82. E.K. Strorms and N.H. Krikorian: J. Phys. Chem., 1960, vol. 64, pp. 1471-77.

    Article  Google Scholar 

  83. S.M. He, N.H. Van Dijk, M. Paladugu, H. Schut, J. Kohlbrecher, F.D. Tichelaar, and S. Van Der Zwaag: Phys. Rev. B, 2010, vol. 82, p. 174111.

    Article  Google Scholar 

  84. F.F. Abraham: Homogeneous Nucleation Theory. Academic Press, New York, NY, 1974.

  85. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197-206.

    CAS  Google Scholar 

  86. J.P. Michel and J.J. Jonas: Acta Metall., 1981, vol. 29, pp. 513-26.

    Article  CAS  Google Scholar 

  87. A. LE Bon, J. Rofes-Vernis, and C. Rossard: Met. Sci., 1975, vol. 9, pp. 36-40.

    Article  Google Scholar 

  88. A.R. Jones, P.R. Howell, and B. Ralph: J. Mater. Sci., 1976, vol. 11, pp. 1600-06.

    Article  CAS  Google Scholar 

  89. D. Turnbull: Impurities and Imperfections, Seminar Proceedings, ASM, Cleveland, OH, 1955, pp. 121-44.

    Google Scholar 

  90. W.J. Liu and J.J. Jonas: Mater. Sci. Technol., 1989, vol. 5, pp. 8-12.

    CAS  Google Scholar 

  91. J.H. Van Der Merwe: J. Appl. Phys., 1963, vol. 34, pp. 117–22.

  92. R.G. Baker and J. Nutting: Precipitation Process in Steels, Special Report No. 64, The Iron and Steel Institute, London, UK, 1959, pp. 1–22.

    Google Scholar 

  93. H. Shoji: Z. Kristallogr., 1931, vol. 77, pp. 381-410.

    CAS  Google Scholar 

  94. Z. Nishiyama: Science Report, Tohoku Imperial Univ., 1936, vol. 25, pp. 79.

    Google Scholar 

  95. W.G. Burgers: Physica, 1934, vol. 1, pp. 561-86.

    Article  CAS  Google Scholar 

  96. N.W. Chase, Jr.: NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. Data, 1998, pp. 1–1951.

  97. L.E. Toth: Transaction Metal Carbides and Nitrides, Academic Press, New York, NY, 1971.

  98. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, UK, 1982, pp. 20-70.

    Google Scholar 

  99. L.M. Cheng, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1907-16.

    Article  CAS  Google Scholar 

  100. L.R. Zhao, K. Chen, Q. Yang, J.R. Rodgers, and S.H. Chiou: Surf. Coat. Technol., 2005, vol. 200, pp. 1595-99.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Continuous Casting Consortium at the University of Illinois at Urbana-Champaign and the National Science Foundation (Grant CMMI-0900138) for support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xu.

Additional information

Manuscript submitted October 10, 2010.

Appendix: Calculation of Interfacial Energy

Appendix: Calculation of Interfacial Energy

According to Turnbull[89] and Liu and Jonas,[90] the interfacial energy consists of two parts: a chemical part (σ c) and a structural part (σ st), so that

$$ \sigma = \sigma_{\text{c}} + \sigma_{\text{st}} $$
(A1)

The chemical interfacial energy is estimated from the difference between the energies of bonds broken in the separation process and of bonds made in forming the interface, with only the nearest neighbors considered. As given by Russell[36]

$$ \sigma_{c} = \frac{{\Updelta E_{0} N_{s} Z_{s} }}{{N_{A} Z_{l} }}(X_{\text{P}} - X_{\text{M}} )^{2} $$
(A2)

where ΔE 0 is the heat of solution of precipitates in a dilute solution in the matrix, N s is the number of atoms per unit area across the interface, Z s is the number of bonds per atom across the interface, Z l is the coordinate number of nearest neighbors within the precipitate crystal lattice, and X P and X M are the molar concentrations of the precipitate-forming element in the precipitate (P) and matrix (M) phase, respectively. ΔE 0 is estimated to equal –ΔH, the heat of formation of the precipitate. X P = 0.5 and X P >> X M.

Van Der Merwe[91] presented a calculation of structural energy for a planar interface. When the two phases have the same structure and orientation but different lattice spacing, the mismatch may be accommodated by a planar array of edge dislocations. Including the strain energy in both crystals, σ st is given as

$$ \sigma_{st} = \frac{{\mu_{I} \bar{c}}}{{4\pi^{2} }}\left\{ {1 + \beta - (1 + \beta^{2} )^{1/2} - \beta \ln \left[ {2\beta (1 + \beta^{2} )^{1/2} - 2\beta^{2} } \right]} \right\} $$
(A3)
$$ {\text{with}}\,\frac{2}{{\bar{c}}} = \frac{1}{{c_{\text{M}}^{e} }} + \frac{1}{{c_{\text{P}}^{e} }},\,\beta = 2\pi \delta \frac{{\lambda_{ + } }}{{\mu_{I} }},\,\frac{2}{{\mu_{\text{I}} }} = \frac{1}{{\mu_{\text{M}} }} + \frac{1}{{\mu_{\text{P}} }},\,\delta = \frac{{2\left| {c_{\text{M}}^{e} - c_{\text{P}}^{e} } \right|}}{{c_{\text{M}}^{e} + c_{\text{P}}^{e} }},\,\frac{1}{{\lambda_{ + } }} = \frac{{1 - \nu_{\text{M}} }}{{\mu_{\text{M}} }} + \frac{{1 - \nu_{\text{P}} }}{{\mu_{\text{P}} }} $$
(A4)

where \( c_{\text{M}}^{e} \) and \( c_{\text{P}}^{e} \) are the nearest-neighbor distance across the interface, which are estimated from the lattice parameters c M, c P, and interface orientations; \( \bar{c} \) is the spacing of a reference lattice across the matrix/precipitate interface; μ M, μ P, and μ I are shear modulii in the matrix (M), precipitate (P), and interface (I), respectively; ν M and ν P are Poisson’s ratios; and δ is the lattice misfit across the interface.

The crystallographic relationships between the AlN (hexagonal close packed [hcp]), NbC (face centered cubic [fcc]), and steel matrix austenite phase (fcc) or ferrite phase (base-centered cubic [bcc]) are chosen as \( (100)_{\text{NbC}} //(100)_{{\alpha{\text{-Fe}}}} \),[92]\( (0001)_{\text{AlN}} //(111)_{{\gamma{\text{-Fe}}}} \),[93,94] and \( (0001)_{\text{AlN}} //(110)_{{\alpha{\text{-Fe}}}} \).[95]

The physical properties used in the calculation are \( - \Updelta H_{\text{A1N}} ({\text{KJ/mol}}) = 341.32 - 4.98 \times 10^{ - 2} T - 1.12 \times 10^{ - 6} T^{2} - 2813/T \),[96] \( - \Updelta H_{\text{NbC}} ({\text{KJ/mol}}) = 157.76 - 4.54\,\, \times \,\,10^{ - 2} T - 3.84\,\, \times \,\,10^{ - 6} T^{2} \),[97] \( \mu_{{\gamma{\text{-Fe}}}} ({\text{GPa}}) = 81\left[ {1 - 0.91(T - 300)/1810} \right] \),[98] \( \nu_{{\gamma{\text{-Fe}}}} = 0.29 \),[99] \( c_{{\gamma{\text{-Fe}}}} (nm) = 0.357 \),[73] \( \mu_{{\alpha{\text{-Fe}}}} (GPa) = 69.2\left[ {1 - 1.31(T - 300)/1810} \right] \),[98] \( \nu_{{\alpha{\text{-Fe}}}} = 0.29 \),[99] \( c_{{\alpha{\text{-Fe}}}} ({\text{nm}}) = 0.286 \),[73] \( \mu_{\text{AlN}} ({\text{GPa}}) = 127 \),[100] \( \nu_{\text{AlN}} = 0.23 \),[100] \( a_{\text{AlN}} ({\text{nm}}) = 0.311 \), \( c_{\text{AlN}} ({\text{nm}}) = 0.497 \),[73] \( \mu_{\text{NbC}} ({\text{GPa}}) = 134\left[ {1 - 0.18(T - 300)/3613} \right] \),[98] \( \nu_{\text{NbC}} = 0.194 \),[98] \( c_{\text{NbC}} ({\text{nm}}) = 0.446 \).[73]

For γ-Fe (111) plane, \( Z_{\text{s}}^{{\gamma - {\text{Fe}}}} = 3 \) and \( N_{\text{s}}^{{\gamma - {\text{Fe}}}} = 4/(\sqrt 3 c_{{\gamma - {\text{Fe}}}}^{2} ) \). For α-Fe, (110) plane \( Z_{\text{s}}^{{\alpha{\text{-Fe}}}} = 4,\) \( N_{\text{s}}^{{\alpha{\text{-Fe}}}} = \sqrt 2 /c_{{\alpha{\text{-Fe}}}}^{2} \), (100) plane \( Z_{\text{s}}^{{\alpha{\text{-Fe}}}} = 4 \), and \( N_{\text{s}}^{{\alpha{\text{-Fe}}}} = 1/c_{{\alpha - {\text{Fe}}}}^{2} \). For both fcc and hcp precipitate structures, \( Z_{l} = 12 \). The calculated interfacial energy decreases slightly as temperature increases and also decreases for NbC (relative to AlN) because of lower heat of formation. The values used in the current simulations are

$$ \sigma_{\text{AlN}}^{{\gamma{\text{-Fe}}}} (840\,^{\text{o}} {\text{C}}) = 0.908\,\,{\text{J/m}}^{2} $$
$$ \sigma_{\text{AlN}}^{{\alpha{\text{-Fe}}}} (700\,\,^{\text{o}} {\text{C}}) = 0.997\,\,{\text{J/m}}^{2} $$
$$ \sigma_{\text{NbC}}^{{\alpha{\text{-Fe}}}} (700\,\,^{\text{o}} {\text{C}}) = 0.432\,\,{\text{J/m}}^{2} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Thomas, B.G. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels. Metall Mater Trans A 43, 1079–1096 (2012). https://doi.org/10.1007/s11661-011-0938-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0938-y

Keywords

Navigation