Skip to main content
Log in

Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy during Conventional Hot-Compression Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to examine the microstructural evolution during hot-compression deformation of the biomedical Co-29Cr-6Mo (weight percent) alloy without the addition of Ni, hot-compression tests have been conducted at deformation temperatures ranging from 1050 °C to 1200 °C at various strain rates of 10−3 to 10 s−1. The grain refinement due to dynamic recrystallization (DRX) was identified under all deformation conditions by means of field-emission scanning electron microscopy/electron backscattered diffraction (FESEM/EBSD) and transmission electron microscopy (TEM) observations. Although the DRX grain size (d) of the deformed specimens considerably decreased with an increasing Zener–Hollomon (Z) parameter at strain rates ranging from 10−3 to 0.1 s−1, a grain size coarser than that predicted from the d-Z relation was obtained at strain rates of 1.0 and 10 s−1. An ultrafine-grained microstructure with a grain size of approximately 0.6 μm was obtained under deformation at 1050 °C at 0.1 s−1, from an initial grain size of 40 μm. The grain refinement to a submicron scale of biomedical Co-Cr-Mo alloys has been achieved with hot deformation by ~60 pct due to DRX, in which the bulging mechanism is not operative. The ultrafine grains obtained due to DRX without bulging is closely related to the considerably low stacking-fault energy (SFE) of the Co-Cr-Mo alloy at deformation temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  3. Gatan is a trademark of Gatan, Inc., Warrendale, PA

References

  1. A. Chiba, K. Kumagai, H. Takeda, and N. Nomura: Mater. Sci. Forum, 2005, vols. 475–479, pp. 2317–22.

    Article  Google Scholar 

  2. R. Valiev: Nat. Mater., 2004, vol. 3, pp. 511–16.

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–68.

    Article  CAS  Google Scholar 

  4. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, and Y. Watanabe: Acta Mater., 2008, vol. 56, pp. 821–34.

    Article  CAS  Google Scholar 

  5. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221–27.

    Article  CAS  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  7. A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, and K. Tsuzaki: Acta Mater., 2002, vol. 50, pp. 1547–57.

    Article  CAS  Google Scholar 

  8. J. Xing, X. Yang, H. Miura, and T. Sakai: Mater. Trans., 2008, vol. 49, pp. 69–75.

    Article  CAS  Google Scholar 

  9. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209.

    Article  CAS  Google Scholar 

  10. A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng., A, 1998, vol. A255, pp. 139–47.

    CAS  Google Scholar 

  11. A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng., A, 2002, vol. A323, pp. 177–86.

    CAS  Google Scholar 

  12. C. Sommitsch and W. Mitter: Acta Mater., 2006, vol. 54, pp. 357–75.

    Article  CAS  Google Scholar 

  13. N. Tsuji, Y. Matsubara, and Y. Saito: Scripta Mater., 1997, vol. 37, pp. 477–84.

    Article  CAS  Google Scholar 

  14. H. Yagi, N. Tsuji, and Y. Saito: Tetsu-to-Hagané, 2000, vol. 86, pp. 349–56.

    CAS  Google Scholar 

  15. H. Monajati, M. Jahazi, S. Yue, and A.K. Taheri: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 895–905.

    Article  CAS  Google Scholar 

  16. Y.P. Li, E. Onodera, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 982–90.

    Article  ADS  CAS  Google Scholar 

  17. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  CAS  Google Scholar 

  18. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    ADS  CAS  Google Scholar 

  19. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng., A, 2004, vols. A387–A389, pp. 158–62.

    Google Scholar 

  20. Y.V.R.K. Prasad: JMEPEG, 2003, vol. 12, pp. 638–45.

    Article  ADS  CAS  Google Scholar 

  21. S.H. Lee, T. Uchikanezaki, N. Nomura, M. Nakamura, and A. Chiba: Mater. Trans., JIM, 2007, vol. 48, pp. 1084–88.

    Article  CAS  Google Scholar 

  22. A. Chiba, S.H. Lee, H. Matsumoto, and M. Nakamura: Mater. Sci. Eng., A, 2009, vols. 513–514, pp. 286–93.

    Google Scholar 

  23. Ika Kartika, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1457–68.

  24. P. Huang and H.F. López: Mater. Lett., 1999, vol. 39, pp. 249–53.

    Article  CAS  Google Scholar 

  25. T. Maki and I. Tamura: Tetsu-to-Hagané, 1984, vol. 15, pp. 2073–80.

    Google Scholar 

  26. C.M. Sellars and W.J. McG. Tegart: Mem. Sci. Rev. Met., 1966, vol. 63, pp. 731–45.

    CAS  Google Scholar 

  27. Nippon Kinzoku Gakkai: Kinzoku Data Book, 4th ed., Maruzen, Tokyo, 2004, p. 21.

  28. L.X. Li, Y. Lou, L.B. Yang, D.S. Peng, and K.P. Rao: Mater. Des., 2002, vol. 23, pp. 451–57.

    CAS  Google Scholar 

  29. X. Fang, D. Yi, B. Wang, C. Wu, and H. Zhang: Rare Met., 2008, vol. 27, pp. 121–26.

    Article  CAS  Google Scholar 

  30. I. Salbatori, T. Inoue, and K. Nagai: ISIJ Int., 2002, vol. 42, pp. 744–50.

    Article  Google Scholar 

  31. A.P. Miodownik: CALPHAD, 1978, vol. 2, pp. 207–26.

    Article  CAS  Google Scholar 

  32. T. Ericsson: Acta Metall., 1966, vol. 14, pp. 853–65.

    Article  CAS  Google Scholar 

  33. T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063–71.

    Article  CAS  MathSciNet  Google Scholar 

  34. N. Tsuji, T. Shinmiya, Y. Saito, and M. Muraki: ISIJ Int., 1998, vol. 38, pp. 380–89.

    Article  CAS  Google Scholar 

  35. N. Tsuji, Y. Matsubara, Y. Saito, and T. Maki: J. Jpn. Inst. Met., 1998, vol. 62, pp. 967–76.

    CAS  Google Scholar 

  36. X. Wang, E. Brünger, and G. Gottstein: Mater. Sci. Eng., A, 2000, vol. A290, pp. 180–85.

    CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Cooperation of Innovative Technology and Advanced Research in Evolutional Area under the Ministry of Education, Culture, Sports, Science and Technology (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Chiba.

Additional information

Manuscript submitted January 30, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, K., Mori, M., Kurosu, S. et al. Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy during Conventional Hot-Compression Deformation. Metall Mater Trans A 40, 1980–1994 (2009). https://doi.org/10.1007/s11661-009-9879-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9879-0

Keywords

Navigation