Skip to main content

Advertisement

Log in

Low-dose and sparse sampling MDCT-based femoral bone strength prediction using finite element analysis

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

This study aims to evaluate the impact of dose reduction through tube current and sparse sampling on multi-detector computed tomography (MDCT)-based femoral bone strength prediction using finite element (FE) analysis. FE-predicted femoral failure load obtained from MDCT scan data was not significantly affected by 50% dose reductions through sparse sampling. Further decrease in dose through sparse sampling (25% of original projections) and virtually reduced tube current (50% and 25% of the original dose) showed significant effects on the FE-predicted failure load results.

Purpose

To investigate the effect of virtually reduced tube current and sparse sampling on multi-detector computed tomography (MDCT)-based femoral bone strength prediction using finite element (FE) analysis.

Methods

Routine MDCT data covering the proximal femur of 21 subjects (17 males; 4 females; mean age, 71.0 ± 8.8 years) without any bone diseases aside from osteoporosis were included in this study. Fifty percent and 75% dose reductions were achieved by virtually reducing tube current and by applying a sparse sampling strategy from the raw image data. Images were then reconstructed with a statistically iterative reconstruction algorithm. FE analysis was performed on all reconstructed images and the failure load was calculated. The root mean square coefficient of variation (RMSCV) and coefficient of correlation (R2) were calculated to determine the variation in the FE-predicted failure load data for dose reductions, using original-dose MDCT scan as the standard of reference.

Results

Fifty percent dose reduction through sparse sampling showed lower RMSCV and higher correlations when compared with virtually reduced tube current method (RMSCV = 5.70%, R2 = 0.96 vs. RMSCV = 20.78%, R2 = 0.79). Seventy-five percent dose reduction achieved through both methods (RMSCV = 22.38%, R2 = 0.80 for sparse sampling; RMSCV = 24.58%, R2 = 0.73 for reduced tube current) could not predict the failure load accurately.

Conclusion

Our simulations indicate that up to 50% reduction in radiation dose through sparse sampling can be used for FE-based prediction of femoral failure load. Sparse-sampled MDCT may allow fracture risk prediction and treatment monitoring in osteoporosis with less radiation exposure in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42:467–475. https://doi.org/10.1016/j.bone.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  2. Drake MT, Clarke BL, Lewiecki EM (2015) The pathophysiology and treatment of osteoporosis. Clin Ther 37:1837–1850. https://doi.org/10.1016/j.clinthera.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  3. Magaziner J (2003) Changes in functional status attributable to hip fracture: a comparison of hip fracture patients to community-dwelling aged. Am J Epidemiol 157:1023–1031. https://doi.org/10.1093/aje/kwg081

    Article  PubMed  Google Scholar 

  4. Blake GM, Fogelman I (2010) An update on dual-energy X-ray absorptiometry. Semin Nucl Med 40:62–73. https://doi.org/10.1053/j.semnuclmed.2009.08.001

    Article  PubMed  Google Scholar 

  5. Choksi P, Jepsen KJ, Clines GA (2018) The challenges of diagnosing osteoporosis and the limitations of currently available tools. Clin Diabetes Endocrinol 4:1–13. https://doi.org/10.1186/s40842-018-0062-7

    Article  Google Scholar 

  6. Schuit SCE, Van Der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202. https://doi.org/10.1016/j.bone.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Fuggle NR, Curtis EM, Ward KA, Harvey NC, Dennison EM, Cooper C (2019) Fracture prediction, imaging and screening in osteoporosis. Nat Rev Endocrinol 15:535–547. https://doi.org/10.1038/s41574-019-0220-8

    Article  PubMed  Google Scholar 

  8. Martineau P, Leslie WD (2018) The utility and limitations of using trabecular bone score with FRAX. Curr Opin Rheumatol 30:412–419. https://doi.org/10.1097/BOR.0000000000000504

    Article  PubMed  Google Scholar 

  9. Gausden EB, Nwachukwu BU, Schreiber JJ et al (2017) Opportunistic use of CT imaging for osteoporosis. Jbjs 99:1580–1590. https://doi.org/10.2106/jbjs.16.00749

    Article  Google Scholar 

  10. Shriram D, Praveen Kumar G, Cui F, Lee YHD, Subburaj K (2017) Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep 7:6011. https://doi.org/10.1038/s41598-017-06271-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM (2014) Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 29:570–580. https://doi.org/10.1002/jbmr.2069

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anitha D, Kim KJ, Lim SK, Lee T (2013) Implications of local osteoporosis on the efficacy of anti-resorptive drug treatment: a 3-year follow-up finite element study in risedronate-treated women. Osteoporos Int 24:3043–3051. https://doi.org/10.1007/s00198-013-2424-4

    Article  CAS  PubMed  Google Scholar 

  13. Anitha D, Subburaj K, Mei K, Kopp FK, Foehr P, Noel PB, Kirschke JS, Baum T (2016) Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep 6:38441. https://doi.org/10.1038/srep38441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750. https://doi.org/10.1016/S8756-3282(03)00210-2

    Article  PubMed  Google Scholar 

  15. Sabet FA, Najafi AR, Hamed E, Jasiuk I (2016) Modelling of bone fracture and strength at different length scales: a review. Interface Focus 6:20150055. https://doi.org/10.1098/rsfs.2015.0055

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morgan EF, Unnikrisnan GU, Hussein AI (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 20:119–143. https://doi.org/10.1146/annurev-bioeng-062117-121139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, Osteoporotic Fractures in Men (MrOS) Research Group, Keaveny TM (2012) Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res 27:808–816

    Article  Google Scholar 

  18. Falcinelli C, Schileo E, Baruffaldi F et al (2017) The effect of computed tomography current reduction on proximal femur subject-specific finite element models. J Mech Med Biol 17:1750012. https://doi.org/10.1142/S0219519417500129

    Article  Google Scholar 

  19. Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714. https://doi.org/10.1007/s00330-010-1845-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harvey HB, Brink JA, Frush DP (2015) Informed consent for radiation risk from CT is unjustified based on the current scientific evidence. Radiology 275:321–325. https://doi.org/10.1148/radiol.2015142859

    Article  PubMed  Google Scholar 

  21. Yi JW, Park HJ, Lee SY, Rho MH, Hong HP, Choi YJ, Kim MS (2017) Radiation dose reduction in multidetector CT in fracture evaluation. Br J Radiol 90:20170240. https://doi.org/10.1259/bjr.20170240

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abbas S, Lee T, Shin S et al (2013) Effects of sparse sampling schemes on image quality in low-dose CT. Med Phys 40. https://doi.org/10.1118/1.4825096

  23. Willemink MJ, De Jong PA, Leiner T et al (2013) Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol 23:1623–1631. https://doi.org/10.1007/s00330-012-2765-y

    Article  PubMed  Google Scholar 

  24. Willemink MJ, Leiner T, De Jong PA et al (2013) Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 23:1632–1642. https://doi.org/10.1007/s00330-012-2764-z

    Article  PubMed  Google Scholar 

  25. Muenzel D, Koehler T, Brown K, Zabić S, Fingerle AA, Waldt S, Bendik E, Zahel T, Schneider A, Dobritz M, Rummeny EJ, Noël PB (2014) Validation of a low dose simulation technique for computed tomography images. PLoS One 9:e107843. https://doi.org/10.1371/journal.pone.0107843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T (2017) Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol 27:5267–5271. https://doi.org/10.1007/s00330-017-4904-y

    Article  Google Scholar 

  27. Sollmann N, Mei K, Schwaiger BJ, Gersing AS, Kopp FK, Bippus R, Maegerlein C, Zimmer C, Rummeny EJ, Kirschke JS, Noël PB, Baum T (2018) Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporos Int 29:2685–2692. https://doi.org/10.1007/s00198-018-4675-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fessler J (2010) Statistical image reconstruction methods for transmission tomography. In: Handbook of medical imaging, Volume 2. Medical Image Processing and Analysis. pp 1–70

  29. Kim D, Ramani S, Fessler AJ (2015) Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction. IEEE Trans Med Imaging 34:167–178. https://doi.org/10.1109/TMI.2014.2350962

    Article  PubMed  Google Scholar 

  30. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173. https://doi.org/10.1016/S1350-4533(01)00045-5

    Article  CAS  PubMed  Google Scholar 

  31. Anitha D, Baum T, Kirschke JS, Subburaj K (2017) Risk of vertebral compression fractures in multiple myeloma patients: a finite-element study. Med (United States) 96:e5825. https://doi.org/10.1097/MD.0000000000005825

    Article  CAS  Google Scholar 

  32. Anitha D, Subburaj K, Kopp FK, Mei K, Foehr P, Burgkart R, Sollmann N, Maegerlein C, Kirschke JS, Noel PB, Baum T (2019) Effect of statistically iterative image reconstruction on vertebral bone strength prediction using bone mineral density and finite element modeling: a preliminary study. J Comput Assist Tomogr 43:61–65. https://doi.org/10.1097/RCT.0000000000000788

    Article  CAS  PubMed  Google Scholar 

  33. Liebl H, Garcia EG, Holzner F et al (2015) In-vivo assessment of femoral bone strength using finite element analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures. PLoS One 10. https://doi.org/10.1371/journal.pone.0116907

  34. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1191/096228099673819272

    Article  CAS  PubMed  Google Scholar 

  35. Glüer, C Blake G, Lu Y, et al (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270. https://doi.org/10.1007/BF01774016

  36. Sollmann N, Mei K, Hedderich DM, Maegerlein C, Kopp FK, Löffler MT, Zimmer C, Rummeny EJ, Kirschke JS, Baum T, Noël PB (2019) Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. Eur Radiol 29:3606–3616. https://doi.org/10.1007/s00330-019-06090-2

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mookiah MRK, Subburaj K, Mei K, Kopp FK, Kaesmacher J, Jungmann PM, Foehr P, Noel PB, Kirschke JS, Baum T (2018) Multidetector computed tomography imaging: effect of sparse sampling and iterative reconstruction on trabecular bone microstructure. J Comput Assist Tomogr 42:441–447. https://doi.org/10.1097/RCT.0000000000000710

    Article  PubMed  Google Scholar 

  38. Anitha D, Mei K, Dieckmeyer M, Kopp FK, Sollmann N, Zimmer C, Kirschke JS, Noel PB, Baum T, Subburaj K (2019) MDCT-based finite element analysis of vertebral fracture risk: what dose is needed? Clin Neuroradiol 29:645–651. https://doi.org/10.1007/s00062-018-0722-0

    Article  CAS  PubMed  Google Scholar 

  39. Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Medica 28:94–108. https://doi.org/10.1016/j.ejmp.2012.01.003

    Article  Google Scholar 

  40. Wiedmann U, Neculaes VB, Harrison D et al (2014) X-ray pulsing methods for reduced-dose computed tomography in PET/CT attenuation correction. In: Medical imaging 2014: physics of medical imaging. SPIE, San Diego, p 90332Z

    Google Scholar 

  41. Park S, Gu L, Rivas-Davila J (2019) A compact 45 V-to-54 kV modular DC-DC converter. In: 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics, COMPEL 2019. p 18851928

  42. Bauer JS, Henning TD, Müeller D, Lu Y, Majumdar S, Link TM (2007) Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. Am J Roentgenol 188:1294–1301. https://doi.org/10.2214/AJR.06.1006

    Article  Google Scholar 

  43. Cody DD, Hou FJ, Divine GW, Fyhrie DP (2000) Short term in vivo precision of proximal femoral finite element modeling. Ann Biomed Eng 28:408–414. https://doi.org/10.1114/1.278

    Article  CAS  PubMed  Google Scholar 

  44. Taylor WR, Roland E, Ploeg H, Hertig D, Klabunde R, Warner MD, Hobatho MC, Rakotomanana L, Clift SE (2002) Determination of orthotropic bone elastic constants using FEA and modal analysis. J Biomech 35:767–773

    Article  CAS  Google Scholar 

  45. Keyak JH, Lee IY, HBS (1994) Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res 28:1329–1336

    Article  CAS  Google Scholar 

Download references

Funding

This research work was financially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project 432290010 (to J.S.K., P.B.N., and T.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karupppasamy Subburaj.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayudu, N.M., Anitha, D.P., Mei, K. et al. Low-dose and sparse sampling MDCT-based femoral bone strength prediction using finite element analysis. Arch Osteoporos 15, 17 (2020). https://doi.org/10.1007/s11657-020-0708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-0708-9

Keywords

Navigation