Skip to main content
Log in

Association between osteoporotic femoral neck fractures and DXA-derived 3D measurements at lumbar spine: a case-control study

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

A case-control study assessing the association of DXA-derived 3D measurements at lumbar spine with osteoporotic hip fractures was performed. Stronger association was found between transcervical hip fractures and integral (AUC = 0.726), and cortical (AUC = 0.696) measurements at the lumbar spine compared with measurements at the trabecular bone (AUC = 0.617); although femur areal bone mineral density (aBMD) remains the referent measurement for hip fracture risk evaluation (AUC = 0.838).

Purpose

The aim of the present study was to evaluate the association between DXA-derived 3D measurements at lumbar spine and osteoporotic hip fractures.

Methods

We analyzed a case-control database composed by 61 women with transcervical hip fractures and 61 age-matched women without any type of fracture. DXA scans at lumbar spine were acquired, and areal bone mineral density (aBMD) was measured. Integral, trabecular and cortical volumetric BMD (vBMD), cortical thickness, and cortical surface BMD (sBMD) at different regions of interest were assessed using a DXA-based 3D modeling software. Descriptive statistics, tests of difference, odds ratio (OR), and area under the receiver operating curve (AUC) were used to compare hip fracture and control groups.

Results

Integral vBMD, cortical vBMD, cortical sBMD, and cortical thickness were the DXA-derived 3D measurements at lumbar spine that showed the stronger association with transcervical hip fractures, with AUCs in the range of 0.685–0.726, against 0.670 for aBMD. The highest AUC (0.726) and OR (2.610) at the lumbar spine were found for integral vBMD at the posterior vertebral elements. Significantly, lower AUC (0.617) and OR (1.607) were found for trabecular vBMD at the vertebral body. Overall, total femur aBMD remains the DXA-derived measurement showing the highest AUC (0.838) and OR (6.240).

Conclusion

This study showed the association of DXA-derived measurements at lumbar spine with transcervical hip fractures. A strong association between vBMD at the posterior vertebral elements and transcervical hip fractures was observed, probably because of global deterioration of the cortical bone. Further studies should be carried out to investigate on the relative risk of transcervical fracture in patients with long-term cortical structural deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Consensus Development Conference (1991) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 90:107–110. https://doi.org/10.1016/0002-9343(93)90218-E

    Article  Google Scholar 

  2. Kanis JA, WHO Scientific Group (2007) Assesment of osteoporosis at the primary health care level. Technical report

    Google Scholar 

  3. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey E, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  5. Siris ES, Chen Y-T, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112. https://doi.org/10.1001/archinte.164.10.1108

    Article  PubMed  Google Scholar 

  6. Silva BC, Broy SB, Boutroy S et al (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom 18:309–330. https://doi.org/10.1016/j.jocd.2015.06.008

    Article  PubMed  Google Scholar 

  7. Bauer JS, Link TM (2009) Advances in osteoporosis imaging. Eur J Radiol 71:440–449. https://doi.org/10.1016/j.ejrad.2008.04.064

    Article  PubMed  Google Scholar 

  8. NIH Consensus Development Panel on Osteoporosis Prevention (2001) Osteoporosis: prevention, diagnosis, and management. Am J Med 285:785–795. https://doi.org/10.1016/S0002-9343(97)00415-4

    Article  Google Scholar 

  9. Li N, Li XM, Xu L et al (2013) Comparison of QCT and DXA: osteoporosis detection rates in postmenopausal women. Int J Endocrinol 2013. https://doi.org/10.1155/2013/895474

  10. Engelke K, Libanati C, Fuerst T et al (2013) Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 11:246–255. https://doi.org/10.1007/s11914-013-0147-2

    Article  CAS  PubMed  Google Scholar 

  11. Therkildsen J, Winther S, Nissen L et al (2019) Feasibility of opportunistic screening for low thoracic bone mineral density in patients referred for routine cardiac CT. J Clin Densitom. https://doi.org/10.1016/j.jocd.2018.12.002

  12. Perreir-Cornet J, Omorou AY, Fauny M et al (2019) Opportunistic screening for osteoporosis using thoraco-abdomino-pelvic CT-scan assessing the vertebral density in rheumatoid arthritis patients. Osteoporos Int

  13. Ahmad O, Ramamurthi K, Wilson KE et al (2010) Volumetric DXA (VXA): a new method to extract 3D information from multiple in vivo DXA images. J Bone Miner Res 25:2744–2751. https://doi.org/10.1002/jbmr.140

    Article  PubMed  Google Scholar 

  14. Whitmarsh T, Humbert L, Del Río Barquero LM et al (2013) 3D reconstruction of the lumbar vertebrae from anteroposterior and lateral dual-energy X-ray absorptiometry. Med Image Anal 17:475–487. https://doi.org/10.1016/j.media.2013.02.002

    Article  PubMed  Google Scholar 

  15. Väänänen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H (2015) Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal 24:125–134. https://doi.org/10.1016/j.media.2015.06.001

    Article  PubMed  Google Scholar 

  16. Humbert L, Martelli Y, Fonolla R, Steghofer M, di Gregorio S, Malouf J, Romera J, Barquero LM (2017) 3D-DXA: assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images. IEEE Trans Med Imaging 36:27–39. https://doi.org/10.1109/TMI.2016.2593346

    Article  PubMed  Google Scholar 

  17. López Picazo M, Magallón Baro A, del Rio Barquero LM et al (2018) 3D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior DXA image including assessment of cortical and trabecular bone. IEEE Trans Med Imaging 37:1–12. https://doi.org/10.1109/TMI.2018.2845909

    Article  Google Scholar 

  18. López Picazo M, Humbert L, Di Gregorio S et al (2019) Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study. Osteoporos Int 30:1099–1110. https://doi.org/10.1007/s00198-019-04894-y

    Article  PubMed  Google Scholar 

  19. Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Assessment of fracture risk. Eur J Radiol 71:392–397. https://doi.org/10.1016/j.ejrad.2008.04.061

    Article  PubMed  Google Scholar 

  20. Marshall D, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259. https://doi.org/10.1136/bmj.312.7041.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cummings SR, Browner WS, Cauley JA et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75. https://doi.org/10.1016/0140-6736(93)92555-8

    Article  CAS  PubMed  Google Scholar 

  22. Melton LJ, Atkinson EJ, O’Fallon WM et al (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233. https://doi.org/10.1002/jbmr.5650081010

    Article  PubMed  Google Scholar 

  23. Stone KL, Seeley DG, Lui L et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18

  24. Vega E, Mautalen C, Gomez H et al (1991) Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur. Osteoporos Int 1:81–86

    Article  CAS  Google Scholar 

  25. Kröger H, Lunt M, Reeve J et al (1999) Bone density reduction in various measurement sites in men and women with osteoporotic fractures of spine and hip: the European quantitation of osteoporosis study. Calcif Tissue Int 64:191–199. https://doi.org/10.1007/s002239900601

    Article  PubMed  Google Scholar 

  26. Chalhoub D, Orwoll ES, Cawthon PM, Ensrud KE, Boudreau R, Greenspan S, Newman AB, Zmuda J, Bauer D, Cummings S, Cauley JA, Osteoporotic Fractures in Men (MrOS) Study Research Group (2016) Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 92:100–106. https://doi.org/10.1016/j.bone.2016.08.014

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heneghan JP, Kirke PN, Murphy BL, Darcy E, Daly L, Bourke GJ, Dinn E, Masterson J (1997) Evaluation of quantitative CT vertebral bone mineral density measurement and the Singh index in elderly females with hip fractures--a case control study. Br J Radiol 70:923–928. https://doi.org/10.1259/bjr.70.837.9486068

    Article  CAS  PubMed  Google Scholar 

  28. Lang TF, Augat P, Lane NE, Genant HK (1998) Trochanteric hip fracture: strong association with spinal trabecular bone mineral density measured with quantitative CT. Radiology 209:525–530. https://doi.org/10.1148/radiology.209.2.9807584

    Article  CAS  PubMed  Google Scholar 

  29. Lee SJ, Anderson PA, Pickhardt PJ (2017) Predicting future hip fractures on routine abdominal CT using opportunistic osteoporosis screening measures: a matched case-control study. Am J Roentgenol 209:395–402. https://doi.org/10.2214/AJR.17.17820

    Article  Google Scholar 

  30. Schwartz S, Ort P (1986) Trabecular mineral content of the spine in women with hip fracture. Musculoskelet Radiol 159:737–740

    Google Scholar 

  31. Humbert L, Hazrati Marangalou J, Del Río Barquero LM et al (2016) Technical note: cortical thickness and density estimation from clinical CT using a prior thickness-density relationship. Med Phys 43:1945–1954. https://doi.org/10.1118/1.4944501

    Article  PubMed  Google Scholar 

  32. Yang L, Udall WJM, McCloskey EV, Eastell R (2014) Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int 25:251–263. https://doi.org/10.1007/s00198-013-2401-y

    Article  CAS  PubMed  Google Scholar 

  33. Holzer G, Von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474. https://doi.org/10.1359/jbmr.081108

    Article  PubMed  Google Scholar 

  34. Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ, Reeve J (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328. https://doi.org/10.1359/jbmr.2001.16.7.1318

    Article  CAS  PubMed  Google Scholar 

  35. Iorio JA, Jakoi AM, Singla A (2016) Biomechanics of degenerative spinal disorders. Asian Spine J 10:377–384. https://doi.org/10.1111/j.1365-3024.1991.tb00288.x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Adams MA (2009) Degenerative disc and vertebral disease - basic sciences. Surgery 27:297–300. https://doi.org/10.1016/j.mpsur.2009.03.005

    Article  Google Scholar 

  37. Poole KES, Treece GM, Mayhew PM et al (2012) Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS One 7:1–7. https://doi.org/10.1371/journal.pone.0038466

    Article  CAS  Google Scholar 

  38. Treece GM, Gee AH, Tonkin C, Ewing SK, Cawthon PM, Black DM, Poole KE, Osteoporotic Fractures in Men (MrOS) Study (2015) Predicting hip fracture type with cortical bone mapping (CBM) in the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 30:2067–2077. https://doi.org/10.1002/jbmr.2552

    Article  PubMed  PubMed Central  Google Scholar 

  39. Noshchenko A, Plaseied A, Patel V et al (2013) Correlation of vertebral strength topography with 3-dimensional computed tomographic structure. Spine (Phila Pa 1976) 38

  40. Jackman TM, Hussein AI, Adams AM et al (2014) Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone. J Orthop Res 32:880–886. https://doi.org/10.1002/jor.22620

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jackman TM, Hussein AI, Curtiss C, Fein PM, Camp A, de Barros L, Morgan EF (2016) Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion. J Bone Miner Metab 31:777–788. https://doi.org/10.1002/jbmr.2749

    Article  Google Scholar 

  42. Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314. https://doi.org/10.1359/JBMR.051027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support from the Industrial Doctorates program of the Generalitat de Catalunya, as well as the QUAES Foundation - UPF Chair for Computational Tools for Healthcare.

Funding

The research leading to these results has also received funding from: Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Ministerio de Economía y Competitividad (Reference: RTC-2014-2740-1), and Eurostars program (Project ID: 9 140) funded by Centro para el Desarrollo Tecnológico Industrial, Ministerio de Economía Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirella López Picazo.

Ethics declarations

Conflict of interest

M. López Picazo and R. Winzenrieth are employees of Galgo Medical. L. Humbert is a stockholder and an employee of Galgo Medical. S. Di Gregorio, M. A. González Ballester, and L. Del Rio have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Picazo, M., Humbert, L., Winzenrieth, R. et al. Association between osteoporotic femoral neck fractures and DXA-derived 3D measurements at lumbar spine: a case-control study. Arch Osteoporos 15, 8 (2020). https://doi.org/10.1007/s11657-019-0680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-019-0680-4

Keywords

Navigation