Skip to main content

Advertisement

Log in

Changes in distribution of zeatin and indole-3-acetic acid in cells during callus induction and organogenesis in vitro in immature embryo culture of wheat

  • Embryo Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Plant organogenesis remains one of the most essential questions of plant developmental biology. Callus tissue in vitro is a valuable tool for the studies on hormonal aspects of plant organogenesis, especially its early events, and immunohistochemical analysis is one of the few approaches offering information on the localization and role of hormones during organ development. The localization of endogenous zeatin and indole-3-acetic acid was investigated during simultaneous bud and root formation in calluses derived from immature embryos of wheat (Triticum aestivum L.). Calluses were induced on Murashige and Skoog (MS) medium supplemented with 2.0 mg L−1 2,4-dichlorophenoxyacetic acid. To stimulate simultaneous bud and root formation, calluses were transferred onto MS medium supplemented with 0.2 mg L−1 kinetin and 0.2 mg L−1 indoleacetic acid. Strong immunostaining for both hormones was detected in proliferating callus tissue, in developing meristematic centers and meristematic zones (whose cells were shown to be involved in organ formation), and at the sites of shoot and root apex initiation. During further development, shoot apexes with leaf primordia were heavily immunostained for zeatin, while immunostaining for indole-3-acetic acid was more intense at the sites of leaf primordia initiation and incipient primordia themselves. In the developing roots, immunostaining for both hormones reached a maximum in the root apex and gradually declined with increasing distance from the apex. Cells of developing procambial strands were also strongly stained for both zeatin and indole-3-acetic acid. These data suggest considerable similarity between patterns of hormone distribution in organs in vitro and in vivo. Thus, callus culture is a convenient and useful model for the study of fundamental biological questions such as how hormones regulate development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

References

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260

    Article  CAS  PubMed  Google Scholar 

  • Bartok T, Sagi F (1990) A new, endosperm-supported callus induction method for wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 22:37–41

    Google Scholar 

  • Batygina TB (2011) Stem cells and morphogenetic developmental programs in plants. Stem Cell Res J 3:45–120

    Google Scholar 

  • Batygina TB (2013) Integrity and reliability system in ontogenesis and evolution. Int J Plant Reprod Biol 4:107–120

    Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Bouamama B, Salem AB, Youssef FB, Chaieb S, Jaafoura MH, Mliki A, Ghorbel A (2011) Somatic embryogenesis and organogenesis from mature caryopses of North African barley accession “Kerkena” (Hordeum vulgare L.). In Vitro Cell Dev Biol Plant 47:321–327

    Article  Google Scholar 

  • Brovko FA, Vasil’eva VS, Shepelyakovskaya AO, Selivankina SY, Kudoyarova GR, Nosov AV, Moshkov DA, Laman AG, Boziev KM, Kusnetsov VV, Kulaeva ON (2007) Cytokinin-binding protein (70 kDa): localization in tissues and cells of etiolated maize seedlings and its putative function. J Exp Bot 58:2479–2490

    Article  CAS  PubMed  Google Scholar 

  • Caboni E, D’Angeli S, Chiappetta A, Innocenti AM, Van Onckelen H, Damiano C (2002) Adventitious shoot regeneration from vegetative shoot apices in pear and putative role of cytokinin accumulation in the morphogenetic process. Plant Cell Tissue Organ Cult 70:199–206

    Article  CAS  Google Scholar 

  • Chen D, Ren Y, Deng Y, Zhao J (2010) Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. J Exp Bot 61:1853–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, Kasahara H, Kamiya Y, Zhao Y (2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su YH, Li W, Sun T, Zhao XY, Li XG, Cheng Y, Zhao Y, Xie Q, Zhang XS (2013) Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by auxin response factor3. Plant Physiol 161:240–251

    Article  CAS  PubMed  Google Scholar 

  • Delporte F, Pretova A, du Jardin P, Watillon B (2014) Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma 251:1455–1470

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewitte W, Chiappetta A, Azmi A, Witters A, Strnad M, Rembur J, Noin M, Chriqui D, Van Onckelen HA (1999) Dynamics of cytokinins in apical shoot meristems of a dayneutral tobacco during floral transition and flower formation. Plant Physiol 119:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong N, Pei D, Yin W (2012) Tissue-specific localization and dynamic changes of endogenous IAA during poplar leaf rhizogenesis revealed by in situ immunohistochemistry. Plant Biotechnol Rep 6:165–174

    Article  Google Scholar 

  • Eapen S, Rao PS (1985) Plant regeneration from immature inflorescence callus cultures of wheat, rye and triticale. Euphytica 34:153–159

    Article  Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Haccius B, Lakshmanan KK (1969) Adventiv-Embryonen – Embryoide – Adventiv-Knospen. Ein Beitrag zur Klärung der Begriffe. Österr Bot Z 116:145–158

    Article  Google Scholar 

  • Hejátko J, Ryu H, Kim GT, Dobešová R, Choi S, Choi SM, Souček P, Horák J, Pekárová B, Palme K, Brzobohatý B, Hwang I (2009) The histidine kinases cytokinin-independent1 and arabidopsis histidine kinase2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21:2008–2021

    Article  PubMed  PubMed Central  Google Scholar 

  • Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta function of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101:8821–8826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Gunnerås SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakani A, Li G, Peng Z (2009) Role of AUX1 in the control of organ identity during in vitro organogenesis and in mediating tissue specific auxin and cytokinin interaction in Arabidopsis. Planta 229:645–657

    Article  CAS  PubMed  Google Scholar 

  • Karkonen A, Simola LK (1999) Localization of cytokinins in somatic and zygotic embryos of Tilia cordata using immunocytochemistry. Physiol Plant 105:356–366

    Article  CAS  Google Scholar 

  • Krikorian AD (1995) Hormones in tissue culture and micropropagation. In: Davies PJ (ed) Plant hormones. Kluwer Academic Publishers, Dordrecht, pp 774–796

    Chapter  Google Scholar 

  • Kudoyarova GR, Korobova AV, Akhiyarova GR, Arkhipova TN, Zaytsev DY, Prinsen E, Egutkin NL, Medvedev SS, Veselov SY (2014) Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). J Exp Bot 65:2287–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Millán-Godínez M, Méndez-Bravo A, Morquecho-Contreras A, Ramírez-Chávez E, Molina-Torres J, Pérez-Torres A, Higuchi M, Kakimoto T, Herrera-Estrella L (2007) Cytokinin receptors are involved in alkamide regulation of root and shoot development in Arabidopsis. Plant Physiol 145:1703–1713

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  CAS  PubMed  Google Scholar 

  • Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15:2979–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohashi-Ito K, Oguchi M, Kojima M, Sakakibara H, Fukuda H (2013) Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development 140:765–769

    Article  CAS  PubMed  Google Scholar 

  • Ozerov IA, Zhinkina NA, Efimov AM, Machs EM, Rodionov AV (2006) Feulgen-positive staining of the cell nuclei in fossilized leaf and fruit tissues of the Lower Eocene Myrtaceae. Bot J Linn Soc 150:315–321

    Article  Google Scholar 

  • Pernisova M, Klima P, Horak J, Válková M, Malbeck J, Souček P, Reichman P, Hoyerová K, Dubová J, Friml J, Zažímalová E, Hejátko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci U S A 106:3609–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rijavec T, Jain M, Dermastia M, Chourey PS (2011) Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Ann Bot 107:1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Scarpella E, Helariutta Y (2010) Vascular pattern formation in plants. Curr Top Dev Biol 91:221–265

    Article  CAS  PubMed  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242

    Article  CAS  Google Scholar 

  • Seldimirova OA, Katasonova AA, Kruglova NN (2011) Formation of morphogenetic centre as an initial stage of morphogenesis in vitro of wheat calli of different origin. Physiol Biochem Cult Plants 43:297–306

    Google Scholar 

  • Seldimirova OA, Kruglova NN (2013) Properties of the initial stages of embryoidogenesis in vitro in wheat calli of various origin. Biol Bull 40:447–454

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Ślesak H, Góralski G, Pawlowska H, Skucińska B, Popielarska-Konieczna M, Joachimiak AJ (2013) The effect of genotype on a barley scutella culture. Histological aspects. Cent Eur J Biol 8:30–37

    Google Scholar 

  • Sossountzov L, Maldiney R, Sotta B, Sabbagh I, Habricot Y, Bonnet M, Miginiac E (1988) Immunocytochemical localization of cytokinins in Craigella tomato and a sideshootless mutant. Planta 175:291–304

    Article  CAS  PubMed  Google Scholar 

  • Steinmacher DA, Krohn NG, Dantas ACM, Stefenon VM, Clement CR, Guerra MP (2007) Somatic embryogenesis in peach palm using the thin cell layer technique: induction, morpho-histological aspects and AFLP analysis of somaclonal variation. Ann Bot 100:699–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18

    Article  Google Scholar 

  • Veselov D, Langhans M, Hartung W, Aloni R, Feussner I, Gӧtz C, Veselova S, Schlomski S, Dickler C, Bächmann K, Ullrich CI (2003) Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta 216:512–522

    CAS  PubMed  Google Scholar 

  • Veselov SY, Kudoyarova GR, Egutkin NL, Gyuli-Zade VG, Mustafina AR, Kof EK (1992) Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole-3-acetic acid. Physiol Plant 86:93–96

    Article  CAS  Google Scholar 

  • Veselov SY, Valcke R, Van Onckelen H, Kudoyarova GR (1999) Cytokinin content and location in the leaves of the wild-type and transgenic tobacco plants. Russ J Plant Physiol 46:26–31

    CAS  Google Scholar 

  • Vysotskaya LB, Veselov SY, Veselov DS, Filippenko VN, Ivanov EA, Ivanov II, Kudoyarova GR (2007) Immunohistological localization and quantification of IAA in studies of root growth regulation. Russ J Plant Physiol 54:827–832

    Article  CAS  Google Scholar 

  • Vysotskaya LB, Akhiyarova GR, Veselov SY, Kudoyarova GR (2011) Cytokinin content and immunolocalization in wheat primary root cells. Tsitologiia 53:884–890

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana A. Seldimirova.

Additional information

Editor: Ming Cheng

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seldimirova, O.A., Kudoyarova, G.R., Kruglova, N.N. et al. Changes in distribution of zeatin and indole-3-acetic acid in cells during callus induction and organogenesis in vitro in immature embryo culture of wheat. In Vitro Cell.Dev.Biol.-Plant 52, 251–264 (2016). https://doi.org/10.1007/s11627-016-9767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-016-9767-4

Keywords

Navigation