Skip to main content
Log in

Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.)

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Enhanced numbers of multiple shoots were induced from shoot tip explants of cucumber. The effects of amino acids (leucine, isoleucine, methionine, threonine, and tryptophan) and polyamines (spermidine, spermine, and putrescine) along with benzyladenine (BA) on multiple shoot induction were investigated. A Murashige and Skoog (MS) medium containing a combination of BA (4.44 μM), leucine (88 μM), and spermidine (68 μM) induced the maximum number of shoots (36.6 shoots per explant) compared to BA (4.44 μM) alone or BA (4.44 μM) with leucine (88 μM). The regenerated shoots were elongated on the same medium. Elongated shoots were transferred to the MS medium fortified with BA (4.44 μM), leucine (88 μM), and putrescine (62 μM) for root induction. Rooted plants were hardened and successfully established in soil with a 90% survival rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabadi A.; Aguero M. S.; Perez-Amador M. A.; Carbonell J. Arginase, arginine decarboxylase, ornithine decarboxylase and polyamines in tomato ovaries. Changes in unpollinated ovaries and parthenocarpic fruits induced by auxin or gibberellin. Plant Physiol. 112: 1237–1244; 1996.

    PubMed  CAS  Google Scholar 

  • Altman A. Retardation of radish leaf senescence by polyamines. Physiol. Plant. 54: 189–193; 1982.

    Article  CAS  Google Scholar 

  • Altman A.; Levin N. Interaction of polyamines and nitrogen nutrition in plants. Physiol. Plant. 89: 653–658; 1993.

    Article  CAS  Google Scholar 

  • Aziz H. A.; McCown B. H. Hormonal response of shoot and callus cultures of cucumber (Cucumis sativus L.). Sci. Hortic. 20: 540; 1985.

    Google Scholar 

  • Bagni N.; Torrigiani P. Polyamines: A new class of growth substances. In: KarssenC. M.; Van LoonL. C.; VreugdenhilD. (eds) Progress in plant growth regulation. Kluwer, Dordrecht, The Netherlands, pp 264–275; 1982.

    Google Scholar 

  • Bais H. P.; Ravishankar G. A. Role of polyamines in the ontogeny and their biotechnological applications. Plant Cell Tiss. Org. Cult. 69: 1–34; 2002.

    Article  CAS  Google Scholar 

  • Bastola D. R.; Minocha S. C. Increased putrescine biosynthesis through transfer of mouse ornithine cDNA in carrot promotes somatic embryogenesis. Plant Physiol. 109: 63–71; 1995.

    PubMed  CAS  Google Scholar 

  • Basu A.; Sethi U.; Guha-Mukherjee S. Regulation of cell proliferation and morphogenesis by aminoacids in Brassica tissue cultures and its correlation with threonine deaminase. Plant Cell Rep. 8: 333–335; 1989.

    Article  CAS  Google Scholar 

  • Chi G. L.; Lin W. S.; Lee J. E. E.; Pua E. C. Role of polyamines on de novo shoot morphogenesis from cotyledons of Brassica campestris spp. Pekinensis (Lour) Olsson in vitro. Plant Cell Rep. 13: 323–329; 1994.

    Article  CAS  Google Scholar 

  • Chowdhry N.; Tyagi A. K.; Maheshwari N.; Maheshwari S. C. Effect of L-proline and L-tryptophan on somatic embryogenesis and plantlet regeneration of rice (Oryza sativa L. cv. Pusa 169). Plant Cell Tiss. Org. Cult. 32: 357–361; 1993.

    Article  CAS  Google Scholar 

  • Compton M. E.; Gray D. J.; Elmstrom G. W. A simple protocol for micropropagating diploid and tetraploid watermelon using shoot tip explants. Plant Cell Tiss. Org. Cult. 3: 211–217; 1993.

    Article  Google Scholar 

  • Compton M. E.; Pierson B.; Staub J. E. Micropropagation for recovery of Cucumis hystrix. Plant Cell Tiss. Org. Cult. 64: 63–67; 2001.

    Article  CAS  Google Scholar 

  • Couee I.; Hummel I.; Sulmon C.; Gouesbet G.; Amrani A. E. Involvement of polyamines in root development. Plant Cell Tiss. Org. Cult. 76: 1–10; 2004.

    Article  CAS  Google Scholar 

  • Davies P. J. The plant hormones: Their nature, occurrence, and functions. In: DaviesP. J. (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Boston, MA, pp 1–12; 1987.

    Google Scholar 

  • De Klerk G. J.; Hanecakova J.; Jasik J. The role of cytokinins in rooting of stem slices cut from apple microcuttings. Plant Biosys. 135: 79–84; 2001.

    Article  Google Scholar 

  • Desai H. V.; Mehta A. R. Changes in polyamine levels during shoot formation, root formation and callus induction in cultured Passiflora leaf discs. J. Plant. Physiol. 119: 45–53; 1985.

    CAS  Google Scholar 

  • Dey O. K. S. M.; Kalia S.; Ghose S.; Guha-Mukherjee S. Biochemical basis of differentiation in plant tissue culture. Curr. Sci. 74: 591–596; 1998.

    CAS  Google Scholar 

  • Eapen S.; George L. Plant regeneration from leaf discs of peanut and pigeonpea: Influence of benzyladenine, indoleacetic acid and indoleacetic acid-amino acid conjugates. Plant Cell Tiss. Org. Cult. 353: 223–227; 1993.

    Article  CAS  Google Scholar 

  • Flores H. E.; Filner P. Polyamine catabolism in higher plants: Characterization of pyrroline dehydrogenase. Plant Growth Regul. 3: 277–291; 1985.

    Article  CAS  Google Scholar 

  • Galston A. W. Polyamines as modulators of plant development. Bioscience. 33: 382–388; 1983.

    Article  CAS  Google Scholar 

  • Galston A. W.; Kaur-Sawhney R. Polyamines as endogenous growth regulators. In: DaviesP. J. (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Dordrecht, pp 280–295; 1987.

    Google Scholar 

  • Galston A. W.; Kaur-Sawhney R. Polyamines in plant physiology. Plant Physiol. 94: 406–410; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Galston A. W.; Kaur-Sawhney R.; Altabella T.; Tiburcio A. F. Plant polyamines in reproductive activity and response to abiotic stress. Bot. Acta. 110: 197–207; 1997.

    CAS  Google Scholar 

  • Geneve R. L.; Hackett W. P. Ethylene evolution and endogenous polyamine levels during adventitious root formation in English ivy. In: FloresH. E.; ArtecaR. N.; ShanonJ. C. (eds) Polyamine and ethylene: Biochemistry, physiology and interactions. Amer. Soc. Plant Physiologists, Rockville, pp 332–334; 1990.

    Google Scholar 

  • Gomez K. A.; Gomez K. A. Statistical procedures for agricultural research with emphasis of rice. International Rice Research Institute, Los Banos, Phillipines; 1976.

    Google Scholar 

  • Hare P. D.; Cress W. A.; van Staden J. The effects of exogenous proline and proline analogues on in vitro shoot organogenesis in Arabidopsis. Plant Growth Reg. 342: 203–207; 2001.

    Article  CAS  Google Scholar 

  • Hoagland, D. R.; Arnon, D. I. The water culture method for growing plants without soil. California Agric. Exp. Sta. Bull., no. 347; 1950.

  • John S. J.; Guha-Mukherjee S. In: TewaryK. K.; SinghalG. S. (eds) Plant molecular biology and biotechnology. Narosa, New Delhi, pp 17–28; 1997.

    Google Scholar 

  • Kaur-Sawhney R.; Tiburcio A. F.; Galston A. W. Polyamine-mediated control of organogenesis in thin layer explants of tobacco. Plant Physiol. 80: 37; 1986.

    Google Scholar 

  • Li Z. L.; Burritt D. J. Changes in endogenous polyamines during the formation of somatic embryos from isogenic lines of Dactylis glomerata L. with different regenerative capacities. Plant Growth Regul. 40: 65–74; 2003.

    Article  CAS  Google Scholar 

  • Martin-Tanguy J. Metabolism and function of polyamines in plants: Recent development (new approaches). Plant Growth Regul. 34: 135–148; 2001.

    Article  CAS  Google Scholar 

  • Misra A. K.; Bhatnagar S. P. Direct shoot regeneration from the leaf explant of cucumber (Cucumis sativus L.). Phytomorphology. 45: 47–55; 1995.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Muyuan Z.; Abing X.; Miaobao Y.; Chunnong H.; Zhilong Y.; Linji W.; Jianjun Y. Effects of amino acids on callus differentiation in barley anther culture. Plant Cell Tiss. Org. Cult. 22: 201–204; 1990.

    Article  Google Scholar 

  • Nag S.; Saha K.; Chowdhuri M. Role of auxin and polyamine in adventitious root formation at the base of mung bean cuttings. Indian J. Plant Physiol. 4: 247–255; 1999.

    CAS  Google Scholar 

  • Rao A. M.; Padma Sree K.; Kavi Kishor P. B. Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. Plant Cell Rep. 15: 72–75; 1995.

    Article  CAS  Google Scholar 

  • Ronchi V. N.; Caligo M. A.; Nizzolini M.; Luccarini G. Stimulation of carrot somatic embryogenesis by proline and serine. Plant Cell Rep. 3: 210–214; 1984.

    Article  CAS  Google Scholar 

  • Scaramagli S.; Biondi S.; Capitani P.; Gerola P.; Altamura M. M.; Torrigiani P. T. Polyamines conjugate levels and ethylene biosynthesis: Inverse relationship with vegetative bud formation in tobacco thin layers. Physiol. Plant. 105: 367–376; 1999.

    Article  CAS  Google Scholar 

  • Scholten H. J. Effect of polyamines on the growth and development of some horticultural crops in micropropagation. Sci. Hortic. 77: 83–88; 1998.

    Article  CAS  Google Scholar 

  • Selvaraj N.; Vengadesan G.; Vasudevan A.; Prem Anand R.; Ramesh Anbazhagan V.; Ganapathi A. Micropropagation of Cucumis sativus L. from field grown plants. In: MaynardD. N. (ed) Proceedings of the Cucurbitaceae Conference. Acta Hortic., Belgium, pp 149–156; 2002.

    Google Scholar 

  • Sen J.; Kalia S.; Guha-Mukherjee S. Level of endogenous free amino acids during various stages of culture of Vigna mungo (L.) Hepper—somatic embryogenesis, organogenesis and plant regeneration. Curr. Sci. 82: 429–433; 2002.

    CAS  Google Scholar 

  • Smith T. A. Polyamines. Ann. Rev. Plant Physiol. 36: 117–143; 1985.

    CAS  Google Scholar 

  • Tang W.; Newton R. Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.). Plant Cell Rep. 24: 581–589; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto S.; Matsubara Y.; Ishioka N. Significance of spermidine in the initiation of adventitious buds in stem segments of Torenia. Plant Cell Physiol. 35: 1071–1077; 1994.

    CAS  Google Scholar 

  • Tarenghi E.; Carre M.; Martin-Tanguy J. Effects of inhibitors of polyamine biosynthesis and of polyamines on strawberry microcutting growth and development. Plant Cell Tiss. Org. Cult. 42: 47–55; 1995.

    Article  CAS  Google Scholar 

  • Tian C. E.; Li R. G.; Guan H. Relationship between polyamines and morphogenesis in cotyledons of Cucumis melo L. cultured in vitro. Acta Bot. Sin. 36: 219–222; 1994.

    CAS  Google Scholar 

  • Tiburcio A. F.; Kaur-Sawhney R.; Galston A. W. Polyamine biosynthesis during vegetative and floral bud differentiation in thin layer tobacco tissue cultures. Plant Cell Physiol. 29: 1241–1249; 1988.

    CAS  Google Scholar 

  • Tonon G.; Kevers C.; Gaspar T. Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: An auxin independent rooting model. Tree Physiol. 2110: 655–663; 2001.

    PubMed  CAS  Google Scholar 

  • Tupy J.; Hrabetova E.; Capkova V. Amino acids and bivalent cations in the growth of tobacco pollen in mass culture. Plant Sci. Lett. 30: 91–98; 1983.

    Article  CAS  Google Scholar 

  • Vasudevan A.; Selvaraj N.; Suresh Kumar S.; Ganapathi A. Multiple shoot induction from shoot tip explants of Cucumber (Cucumis sativus L.). Cucurbit Genet. Coop. Rep. 24: 8–12; 2001.

    Google Scholar 

  • Walden R.; Cordeiro A.; Tiburcio A. F. Polyamines: Small molecules triggering pathways in plant growth and development. Plant Physiol. 113: 1009–1013; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y.; Kumpaisal R.; Hashimoto T.; Sugimoto Y. Growth and aspartate kinase activity in wheat cell suspension culture: Effects of lysine analogs and aspartate-derived amino acids. Plant Cell Physiol. 27: 607–617; 1986.

    CAS  Google Scholar 

  • Zhu C.; Chen Z. Role of polyamines in adventitious shoot morphogenesis from cotyledons of cucumber in vitro. Plant Cell Tiss. Org. Cult. 81: 45–53; 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Department of Science and Technology (DST), Government of India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vasudevan.

Additional information

Editor: Gregory C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, A., Selvaraj, N., Ganapathi, A. et al. Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). In Vitro Cell.Dev.Biol.-Plant 44, 300–306 (2008). https://doi.org/10.1007/s11627-008-9135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9135-0

Keywords

Navigation