Skip to main content
Log in

Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Renal injury is a common side effect of the chemotherapeutic agent ifosamide. Current evidence suggests that the ifosfamide metabolite chloroacetaldehyde may contribute to this nephrotoxicity. The present study examined the effects of ifosfamide and chloroacetaldehyde on rabbit proximal renal tubule cells in primary culture. The ability of the uroprotectant medication sodium 2-mercaptoethanesulfonate (mesna) to prevent chloroacetaldehyde-induced renal cell injury was also assessed. Chloroacetaldehyde (12.5–150 µM) produced dose-dependent declines in neutral red dye uptake, ATP levels, glutathione content, and cell growth. Coadministration of mesna prevented chloroacetaldehyde toxicity while pretreatment of cells with the glutathione-depleting agent buthionine sulfoximine enhanced the toxicity of chloroacetaldehyde. Ifosfamide (1000–10 000 µM) toxicity was detected only at concentrations of 4000 µM or greater. Analysis of media collected from ifosfamide-treated cell cultures revealed the presence of several ifosfamide metabolites, demonstrating that renal proximal tubule cells are capable of biotransforming this chemotherapeutic agent. This primary renal cell culture system should prove useful in studying the cause and prevention of ifosfamide nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleo, M.; Taub, M.; Olson, J., et al. Primary cultures of rabbit renal proximal tubule cells: II. Selected phase I and phase II metabolic capacities. Toxicol. In Vitro 4:727–733; 1990.

    Article  CAS  Google Scholar 

  2. Andreoli, S.; McAteer, J.; Seifert, S., et al. Oxidant-induced alteration in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury. Am. J. Physiol. 265:F377-F384; 1993.

    PubMed  CAS  Google Scholar 

  3. Bohets, H. H.; Van Thielin, M. N.; Van Der Biest, I., et al. Cytotoxicity of mercury compounds in LLC-PK1, MDCK and human proximal tubule cells. Kidney Int. 47:395–403; 1995.

    PubMed  CAS  Google Scholar 

  4. Borenfreund, E.; Puerner, J. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 24:119–124; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Ho, P.; Zimmerman, K.; Wexler, L., et al. A prospective evaluation of ifosfamide-related nephrotoxicity in children and young adults. Cancer 76:2557–2564; 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Meier, T.; Allenbacher, A.; Mueller, E., et al. Ifosfamide induced depletion of glutathione in human peripheral blood lymphocytes and protection by mesna. Anti-Cancer Drugs 5:403–409; 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Mohrmann, M.; Pauli, A.; Ritzer, M., et al. Inhibition of sodium-dependent transport systems in LLC-PK1 cells by metabolites of ifosfamide. Renal Physiol. Biochem. 15:289–301; 1992.

    PubMed  CAS  Google Scholar 

  9. Mohrmann, M.; Ansorge, S.; Schmich, U., et al. Toxicity of ifosfamide, cyclophosphamide and their metabolites in renal tubular cells in culture. Pediatr. Nephrol. 8:157–163; 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Mohrmann, M.; Kupper, N.; Schonfeld, B., et al., Ifosfamide and mesna: effects on the Na/H exchanger in renal epithelial cells in culture. Renal Physiol. Biochem. 18:118–127; 1995.

    PubMed  CAS  Google Scholar 

  11. Mohrmann, M.; Ansorge, S.; Schmich, U., et al. Dithio-bis-mercaptoethanesulphonate (dimesna) does not prevent cellular damage by metabolites of ifosfamide and cyclophosphamide in LLC-PK1 cells. Pediatr. Nephrol. 8:458–465; 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Nissim, I.; Weinberg, J. M. Glycine attentuates Fanconi syndrome induced by maleate or ifosfamide in rats. Kidney Int. 49:684–695; 1996.

    PubMed  CAS  Google Scholar 

  13. Ormstad, K.; Orrenius, S.; Lastbom, T., et al. Pharmacokinetics and metabolism of sodium 2-mercaptoethanesulfonate in the rat. Cancer Res. 43:333–338; 1983.

    PubMed  CAS  Google Scholar 

  14. Prozialeck, W. C.; Lamar, P.C. Effects of glutathione depletion on the cytotoxic actions of cadmium in LLC-PK1, cells. Toxicol. Appl. Pharmacol. 134:285–295; 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Sakhrani, L. M.; Badie-Dezfooly, B.; Trizna, W., et al. Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am. J. Physiol. 246:F757-F764; 1984.

    PubMed  CAS  Google Scholar 

  16. Skinner, R.; Sharkey, I.; Pearson, A., et al. Ifosfamide, mesna and nephrotoxicity in children. J. Clin. Oncol. 11:173–190; 1993.

    PubMed  CAS  Google Scholar 

  17. Somani, S. M.; Ravi, R.; Rybak, L. P. Diethyldithiocarbamate protection against cisplatin nephrotoxicity. Drug Chem. Toxicol. 18:151–170; 1995.

    PubMed  CAS  Google Scholar 

  18. Sood, C.; O’Brien, P. J. Molecular mechanisms of chloroacetaldehyde-induced cytotoxicity in isolated rat hepatocytes. Biochem. Pharmacol. 46:1621–1626; 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Sood, C.; O’Brien, P. Chloroacetaldehyde-induced hepatocyte cytotoxicity: mechanisms for cytoprotection. Biochem. Pharmacol. 48:1025–1032; 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Springate, J. Ifosfamide metabolite chloroacetaldehyde causes renal dysfunction in vivo. J. Appl. Toxicol. 17:75–79; 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Springate, J.; Zamlauski-Tucker, M.; Lu, H., et al. Renal clearance of ifosfamide. Drug Metab. Dispos. 29:1081–1082; 1997.

    Google Scholar 

  22. Taub, M. Primary kidney cells. In: Pollard, J.; Walker, J., ed. Methods in molecular biology. Vol. 5. Animal cell culture. Clifton, NJ: Humana Press; 1990:189–196.

    Chapter  Google Scholar 

  23. Wagner, T. Ifosfamide clinical pharmacokinetics. Clin. Pharmacokinet. 26:439–456; 1994.

    Article  PubMed  CAS  Google Scholar 

  24. Wang, J.; Chan, K. Identification of new metabolites of ifosfamide in rat urine using ion cluster technique. J. Mass. Spectrom. 30:675–683; 1995.

    Article  CAS  Google Scholar 

  25. Zamlauski-Tucker, M.; Morris, M.; Springate, J. Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol. Appl. Pharmacol. 129:170–175; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Springate, J., Chan, K., Lu, H. et al. Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. In Vitro Cell.Dev.Biol.-Animal 35, 314–317 (1999). https://doi.org/10.1007/s11626-999-0080-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0080-y

Key words

Navigation