Skip to main content
Log in

Growth and differentiation regulate CD44 expression on human keratinocytes

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Several members of the CD44 family of hyaluronan receptors are expressed on keratinocytes. To identify factors that might be important in regulating CD44 expression, we studied CD44 expression on keratinocytes growing in vitro under a variety of conditions and on cells isolated directly from epidermis. Using Western immunoblots and metabolic labeling, we showed that the pattern of CD44 proteins expressed by keratinocytes was strongly influenced by growth and differentiation. Many protein forms of CD44 are expressed on proliferating keratinocytes in preconfluent cultures, whereas only a few forms are expressed on differentiated cells and in confluent cultures. In preconfluent monolayers, at least four splice variants were identified, including epican, CD44H, CD44E, and a 180-kDa variant. In differentiated cells or in confluent cultures, by contrast, only epican and the 180-kDa protein variant were found. Synthesis of all variants is strongly downregulated when keratinocytes become confluent or when they differentiate. Epican is the predominant form of CD44 on keratinocytes under all conditions and is expressed as a heparan, chondroitin, or keratan sulfate proteoglycan. Preconfluent basal keratinocytes, but not confluent or differentiated keratinocytes, also express chondroitin sulfate proteoglycan forms of CD44E and of the 180-kDa core protein. The modal size of the epican expressed on differentiated keratinocytes is smaller than the size of the epican expressed on basal keratinocytes. Thus, cell confluence and differentiation regulate several aspects of CD44 expression on keratinocytes, suggesting nuances in function for the different protein forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arch, R.; Wirth, K.; Hoffman, M.; Ponta, H.; Matzku, S.; Herrlick, P.; Zöller, M. Participation in normal immune responses of a metastasis-inducing splice variant of CD44. Science (Wash., DC) 257:682–685; 1992.

    Article  CAS  Google Scholar 

  • Aruffo, A.; Stamenkovic, I.; Melnick, I.; Underhill, C. B.; Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, K. L.; Jackson, D. G.; Simon, J. C.; Tanczos, E.; Peach, R.; Modrell, B.; Stamenkovic, I.; Plowman, G.; Aruffo, A. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J. Cell Biol. 128:687–698; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Boukamp, P.; Petrussevska, R. T.; Breitkruetz, D.; Hornung, J.; Markham, A.; Fusenig, N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106:761–771; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, S. T.; Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81:33s-40s; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. A.; Bouchard, T.; St John, T.; Wayner, E.; Carter, W. G. Human keratinocytes express a new CD44 core protein (CD44E) as a heparan sulfate intrinsic membrane proteoglycan with additional exons. J. Cell Biol. 113:207–221; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Culty, M.; Nguyen, H. A.; Underhill, C. A. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J. Cell Biol. 116:1055–1062; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Faassen, A. E.; Schrager, J. A.; Klein, D. J.; Oegema, T. R.; Couchman, J. R.; McCarthy, J. B. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in Type I collagen-mediated melanoma cell motility and invasion. J. Cell Biol. 116:521–531; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Fox, S. B.; Fawcett, J.; Jackson, D. G.; Collins, I.; Gatter, K. C.; Harris, A. L.; Gearing, A.; Simmons, D. L. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res. 54:4539–4546; 1994.

    PubMed  CAS  Google Scholar 

  • Ghaffari, S.; Dougherty, G. L.; Lansdorp, P. M.; Eaves, C. J. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alterations in chronic myelogenous leukemia. Blood 86:2976–2985; 1995.

    PubMed  CAS  Google Scholar 

  • Goldstein, L. A.; Zhou, D. F. H.; Picker, L. J.; Minty, C. N.; Bargatze, R. F.; Ding, J. F.; Butcher, E. C. A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56:1063–1072; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Günthert, U.; Hofmann, M.; Rudy, W.; Reber, S.; Zöller, M.; Haubmann, I.; Matzku, S.; Wenzel, A.; Ponta, H.; Herrlich, P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24; 1991.

    Article  PubMed  Google Scholar 

  • Haggerty, J. G.; Bretton, R. H.; Milstone, L. M. Identification and characterization of a cell surface proteoglycan on keratinocytes. J. Invest. Dermatol. 99:374–380; 1992.

    Article  PubMed  CAS  Google Scholar 

  • He, Q.; Lesley, J.; Hyman, R.; Ishihara, K.; Kincade, P. W. Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J. Cell Biol. 119:1711–1719; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hennings, H.; Cheng, M. D.; Steinert, P. M.; Holbrook, K.; Yuspa, S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Herbold, K. W.; Zhou, J.; Haggerty, J. G.; Milstone, L. M. CD44 expression on epidermal melanocytes. J. Invest. Dermatol. 106:1230–1235; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hua, Q., Knudsen, C. B.; Knudsen, W. Internalization of hyaluronan by chondrocytes via receptor-mediated endocytosis. J. Cell Sci. 106:365–375; 1993.

    PubMed  CAS  Google Scholar 

  • Hudson, D. L.; Sleeman, J.; Watt, F. M. CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. J. Cell Sci. 108:1959–1970; 1995.

    PubMed  CAS  Google Scholar 

  • Jackson, D. G.; Bell, J. I.; Dickinson, R.; Timans, J.; Shields, J.; Whittle, N. Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J. Cell Biol. 128:673–685; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Jalkanen, S.; Jalkanen, M.; Bargetze, R. F.; Tammi, M.; Butcher, E. C. Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man. J. Immunol. 141:1615–1623; 1988.

    PubMed  CAS  Google Scholar 

  • Jensen, P. J.; Telegan, R. M.; Lavker, R. M.; Wheelock, M. M. E-cadherin and P-cadherin have partially redundant roles in human epidermal stratification. Cell Tissue Res. 288:307–316; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kansas, G. S.; Muirhead, M. J.; Dailey, M. O. Expression of the CD11/CD18 leukocyte adhesion molecule 1 and CD44 adhesion molecules during normal myeloid and erythroid differentiation in humans. Blood 76:2483–2492; 1990.

    PubMed  CAS  Google Scholar 

  • Kennel, S. J.; Lankford, T. K.; Foote, L. J.; Shinpock, S. G.; Stringer, C. CD44 expression on murine tissues. J. Cell Sci. 104:373–382; 1993.

    PubMed  CAS  Google Scholar 

  • König, H.; Moll, J.; Ponta, H.; Herrlich, P. Trans-acting factors regulate the expression of CD44 splice variants. EMBO J. 15:4030–4039; 1996.

    PubMed  Google Scholar 

  • Kugelman, L. C.; Ganguly, S.; Haggerty, J. G.; Weissman, S. M.; Milstone, L. M. The core protein of epican, a heparan sulfate proteoglycan on keratinocytes, is an alternative form of CD44. J. Invest. Dermatol. 99:381–385; 1992.

    Article  CAS  Google Scholar 

  • Mackay, C. R.; Terpe, H.-J.; Stauder, R.; Marston, W. L.; Stark, H.; Günthert, U. Expression and modulation of CD44 variant isoforms in humans. J. Cell Biol. 124:71–82; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Milstone, L. M. Isolation of two polypeptides that form intermediate filaments in bovine esophageal epithelium. J. Cell Biol. 88:317–322; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Milstone, L. M.; Hough-Monroe, L.; Kugelman, L. C.; Bender, J. R.; Haggerty, J. G. Epican, a heparan/chondroitin sulfate form of CD44, mediates cell-cell adhesion. J. Cell Sci. 107:3183–3190; 1994.

    PubMed  CAS  Google Scholar 

  • Milstone, L. M.; McGuire, J. M.; LaVigne, J. F. Retinoic acid causes premature desquamation of cells from confluent cultures of stratified squamous epithelia. J. Invest. Dermatol. 79:253–260; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Peach, R. J.; Hollenbaugh, D.; Stamenkovic, I.; Aruffo, A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J. Cell Biol. 122:257–264; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Peipkorn, M.; Fleckman, P.; Carney, H.; Hovingh, P.; Linker, A. The distinctive pattern of proteoglycan and glycosaminoglycan free chain synthesis by cultured human epidermal keratinocytes. J. Invest. Dermatol. 94:107–113; 1990.

    Article  Google Scholar 

  • St. John, T.; Meyer, J.; Idzerda, R.; Gallatin, W. M. Expression of CD44 confers a new adhesive phenotype on transfected cells. Cell 60:45–52; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, R. D.; Bernfield, M. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia. Proc. Natl. Acad. Sci. USA 85:9562–9566; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, R. D.; Hinkes, J. T.; Bernfield, M. Syndecan-1, a cell-surface proteoglycan, changes in size and abundance when keratinocytes stratify. J. Invest. Dermatol. 99:390–396; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, P. M.; Kugelman, L. C.; Coifman, Y.; Hough, L. M.; Milstone, L. M. Human keratinocytes catabolize thymidine. J. Invest. Dermatol. 90:8–12; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, P. M.; Milstone, L. M. Dipyridamole potentiates the growth-inhibitory action of methotrexate and 5-fluorouracil in human keratinocytes in vitro. J. Invest. Dermatol. 93:523–527; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, P. M.; Barnett, S. K.; Atillasoy, E. S.; Milstone, L. M. Methotrexate induces differentiation in human keratinocytes. Proc. Natl. Acad. Sci. USA 89:594–598; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Screaton, G. R.; Bell, M. V.; Jackson, D. G.; Cornelis, F. B.; Gerth, U.; Bell, J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc. Natl. Acad. Sci. USA 89:12160–12164; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic, I.; Aruffo, A.; Amiot, M.; Seed, B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J 10:343–348; 1991.

    PubMed  CAS  Google Scholar 

  • Tuhkanen, A.-L.; Tammi, M.; Tammi, R. CD44 substituted with heparan sulfate and endo-β-galactosidase-sensitive oligosaccharides: a major proteoglycan in adult human epidermis. J. Invest. Dermatol. 109:213–218; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tuhkanen, A.-L.; Tammi, M.; Pelttari, A.; Agren, U. M.; Tammi, R. Ultrastructural analysis of human epidermal CD44 reveals preferential distribution on the plasma membrane domains facing hyaluronan-rich matrix pouches. J. Histochem. Cytochem. 46:241–248; 1998.

    PubMed  CAS  Google Scholar 

  • van Weering, D. H. J.; Baas, P. D.; Bos, J. L. A PCR-based method for the analysis of human CD44 splice products. PCR Methods Appl. 3:100–106; 1993.

    PubMed  Google Scholar 

  • Wang, C.; Tammi, M.; Tammi, R. Distribution of hyaluronan and its CD44 receptor in the epithelia of human skin appendages. Histochemistry 98:105–112; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F. M.; Hertle, M. D. Keratinocyte integrins. In: Leigh, I.; Lane, B.; Watt, F., ed. The keratinocyte handbook. Cambridge, U.K.: Cambridge Univ. Press; 1994:132–164.

    Google Scholar 

  • Watt, F. M.; Green, H. Stratification and terminal differentiation of cultured epidermal cells. Nature (Lond.) 295:424–426; 1982.

    Article  Google Scholar 

  • Wheatley, S. C.; Isacke, C. M.; Crossley, P. H. Restricted expression of the hyaluronan receptor, CD44, during post-implantation mouse embryogenesis suggests key roles in tissue formation and patterning. Development 119:295–306; 1993.

    PubMed  CAS  Google Scholar 

  • Yuspa, S. H.; Kilkenny, A. E.; Steinert, P. M.; Roop, D. R. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J. Cell Biol. 109:1207–1217; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Haggerty, J.G. & Milstone, L.M. Growth and differentiation regulate CD44 expression on human keratinocytes. In Vitro Cell.Dev.Biol.-Animal 35, 228–235 (1999). https://doi.org/10.1007/s11626-999-0031-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0031-7

Key words

Navigation