Skip to main content
Log in

Differentiation of human ES cell line KIND-2 to yield tripotent cardiovascular progenitors

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (hESCs) have the ability to differentiate into all the three lineages and are an ideal starting material to obtain cells of desired lineage for regenerative medicine. Continued efforts are needed to evolve more robust protocols to obtain cells of desired lineages and in larger numbers. Also, it has now been realized that rather than transplanting fully committed cells differentiated in vitro, it may be ideal to transplant committed progenitors which retain the intrinsic ability to proliferate and also differentiate better into multiple lineages based on the in vivo cues. For cardiac regeneration, the desired progenitor is a multipotent cardiovascular progenitor which has the ability to regenerate cardiomyocytes, endothelial cells, and also smooth muscle cells. The present study was undertaken to carefully compare three widely used protocols to differentiate hESCs into cardiac progenitors, viz., spontaneous differentiation, differentiation by END-2-conditioned medium, and directed differentiation using growth factors followed by quantitative PCR to study the relative expression of early cardiovascular markers. hESC differentiation mimicked the early embryonic development, and the transition into mesoendoderm, mesoderm, early cardiac progenitors, and cardiac cells associated with spontaneous beating was clearly evident in all the three groups. However, compared to spontaneous and END-2-associated differentiation, directed differentiation led to several-fold higher expression of cardiac transcripts (>75-fold Nkx2.5 and >150-fold Tbx5) in response to the stage-specific addition of well-established cardiogenic inducers and inhibitors of specific signaling pathways. We propose to use tripotent cardiovascular progenitors derived by directed differentiation for further preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Abdel-Latif A.; Bolli R.; Tleyjeh I. M.; Montori V. M.; Perin E. C.; Hornung C. A.; Zuba-Surma E. K.; Al-Mallah M.; Dawn B. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med. 167: 989–997; 2007.

    Article  PubMed  Google Scholar 

  • Beltrami A. P.; Barlucchi L.; Torella D.; Baker M.; Limana F.; Chimenti S.; Kasahara H.; Rota M.; Musso E.; Urbanek K.; Leri A.; Kajstura J.; Nadal-Ginard B.; Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Beqqali A.; Kloots J.; Ward-van O. D.; Mummery C.; Passier R. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 24: 1956–1967; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bernardo A. S.; Faial T.; Gardner L.; Niakan K. K.; Ortmann D.; Senner C. E.; Callery E. M.; Trotter M. W.; Hemberger M.; Smith J. C.; Bardwell L.; Moffett A.; Pedersen R. A. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9: 144–155; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Boheler K. R.; Joodi R. N.; Qiao H.; Juhasz O.; Urick A. L.; Chuppa S. L.; Gundry R. L.; Wersto R. P.; Zhou R. Embryonic stem cell-derived cardiomyocyte heterogeneity and the isolation of immature and committed cells for cardiac remodeling and regeneration. Stem Cells Int. 2011: 214203; 2011.

    PubMed  Google Scholar 

  • Burridge P. W.; Anderson D.; Priddle H.; Barbadillo Munoz M. D.; Chamberlain S.; Allegrucci C.; Young L. E.; Denning C. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25: 929–938; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Burridge P. W.; Thompson S.; Millrod M. A.; Weinberg S.; Yuan X.; Peters A.; Mahairaki V.; Koliatsos V. E.; Tung L.; Zambidis E. T. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One 6: e18293; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Cai C. L.; Liang X.; Shi Y.; Chu P. H.; Pfaff S. L.; Chen J.; Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5: 877–889; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Caspi O.; Huber I.; Kehat I.; Habib M.; Arbel G.; Gepstein A.; Yankelson L.; Aronson D.; Beyar R.; Gepstein L. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 50: 1884–1893; 2007.

    Article  PubMed  Google Scholar 

  • Cerdan C.; McIntyre B. A.; Mechael R.; Levadoux-Martin M.; Yang J.; Lee J. B.; Bhatia M. Activin A promotes hematopoietic fated mesoderm development through upregulation of Brachyury in human embryonic stem cells. Stem Cells Dev. 21: 2866–2877; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Chen H. F.; Kuo H. C.; Chien C. L.; Shun C. T.; Yao Y. L.; Ip P. L.; Chuang C. Y.; Wang C. C.; Yang Y. S.; Ho H. N. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum. Reprod. 22: 567–577; 2007.

    Article  PubMed  Google Scholar 

  • Dai W.; Field L. J.; Rubart M.; Reuter S.; Hale S. L.; Zweigerdt R.; Graichen R. E.; Kay G. L.; Jyrala A. J.; Colman A.; Davidson B. P.; Pera M.; Kloner R. A. Survival and maturation of human embryonic stem cell-derived cardiomyocyte in rat hearts. J. Mol. Cell. Cardiol. 43: 504–516; 2007.

    Article  PubMed  CAS  Google Scholar 

  • David R.; Jarsch V. B.; Schwarz F.; Nathan P.; Gegg M.; Lickert H.; Franz W. M. Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovasc. Res. 92: 115–122; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Dubois N. C.; Craft A. M.; Sharma P.; Elliott D. A.; Stanley E. G.; Elefanty A. G.; Gramolini A.; Keller G. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29: 1011–1018; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Graichen R.; Xu X.; Braam S. R.; Balakrishnan T.; Norfiza S.; Sieh S.; Soo S. Y.; Tham S. C.; Mummery C.; Colman A.; Zweigerdt R.; Davidson B. P. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76: 357–370; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kattman S. J.; Huber T. L.; Keller G. M. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11: 723–732; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kehat I.; Kenyagin-Karsenti D.; Snir M.; Segev H.; Amit M.; Gepstein A.; Livne E.; Binah O.; Itskovitz-Eldor J.; Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108: 407–414; 2001.

    PubMed  CAS  Google Scholar 

  • Kumar N.; Hinduja I.; Nagvenkar P.; Pillai L.; Zaveri K.; Mukadam L.; Telang J.; Desai S.; Mangoli V.; Mangoli R.; Padgaonkar S.; Kaur G.; Puri C.; Bhartiya D. Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Stem Cells Dev. 18: 435–445; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Laflamme M. A.; Chen K. Y.; Naumova A. V.; Muskheli V.; Fugate J. A.; Dupras S. K.; Reinecke H.; Xu C.; Hassanipour M.; Police S.; O’Sullivan C.; Collins L.; Chen Y.; Minami E.; Gill E. A.; Ueno S.; Yuan C.; Gold J.; Murry C. E. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25: 1015–1024; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Laugwitz K. L.; Moretti A.; Lam J.; Gruber P.; Chen Y.; Woodard S.; Lin L. Z.; Cai C. L.; Lu M. M.; Reth M.; Platoshyn O.; Yuan J. X.; Evans S.; Chien K. R. Postnatal isl1 cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433: 647–653; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Leor J.; Gerecht S.; Cohen S.; Miller L.; Holbova R.; Ziskind A.; Shachar M.; Feinberg M. S.; Guetta E.; Itskovitz-Eldor J. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93: 1278–1284; 2007.

    Article  PubMed  Google Scholar 

  • Mauritz C.; Martens A.; Rojas S. V.; Schnick T.; Rathert C.; Schecker N.; Menke S.; Glage S.; Zweigerdt R.; Haverich A.; Martin U.; Kutschka I. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur. Heart J. 32: 2634–2641; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Menasche P. Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis. 50: 7–17; 2007.

    Article  PubMed  Google Scholar 

  • Messina E.; De Angelis L.; Frati G.; Morrone S.; Chimenti S.; Fiordaliso F.; Salio M.; Battaglia M.; Latronico M. V.; Coletta M.; Vivarelli E.; Frati L.; Cossu G.; Giacomello A. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95: 911–921; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Moretti A.; Caron L.; Nakano A.; Lam J. T.; Bernshausen A.; Chen Y.; Qyang Y.; Bu L.; Sasaki M.; Martin-Puig S.; Sun Y.; Evans S. M.; Laugwitz K. L.; Chien K. R. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151–1165; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mummery C.; Ward D.; van den Brink C. E.; Bird S. D.; Doevendans P. A.; Opthof T.; Brutel de la Riviere A.; Tertoolen L.; van der Heyden M.; Pera M. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200: 233–242; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Mummery C.; Ward W.; Passier R. Differentiation of human embryonic stem cells to cardiomyocytes by co-culture with endoderm in serum-free medium. Curr. Protoc. Stem Cell Biol. Chap 1:Unit 1F.2; 2007.

  • Mummery C.; Ward-van Oostwaard D.; Doevendans P.; Spijker R.; van den Brink S.; Hassink R.; van der Heyden M.; Opthof T.; Pera M.; de la Riviere A. B.; Passier R.; Tertoolen L. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107: 2733–2740; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Murry C. E.; Whitney M. L.; Reinecke H. Muscle cell grafting for the treatment and prevention of heart failure. J. Card. Fail. 8: S532–S541; 2002.

    Article  PubMed  Google Scholar 

  • Nagvenkar P.; Pethe P.; Pawani H.; Telang J.; Kumar N.; Hinduja I.; Zaveri K.; Bhartiya D. Evaluating differentiation propensity of in-house derived human embryonic stem cell lines KIND-1 and KIND-2. In Vitro Cell. Dev. Biol. Anim. 47: 406–419; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Narazaki G.; Uosaki H.; Teranishi M.; Okita K.; Kim B.; Matsuoka S.; Yamanaka S.; Yamashita J. K. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118: 498–506; 2008.

    Article  PubMed  Google Scholar 

  • Oh H.; Bradfute S. B.; Gallardo T. D.; Nakamura T.; Gaussin V.; Mishina Y.; Pocius J.; Michael L. H.; Behringer R. R.; Garry D. J.; Entman M. L.; Schneider M. D. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. U. S. A. 100: 12313–12318; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Reinecke H.; Zhang M.; Bartosek T.; Murry C. E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100: 193–202; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Roger V. L.; Go A. S.; Lloyd-Jones D. M.; Adams R. J.; Berry J. D.; Brown T. M.; Carnethon M. R.; Dai S.; de Simone G.; Ford E. S.; Fox C. S.; Fullerton H. J.; Gillespie C.; Greenlund K. J.; Hailpern S. M.; Heit J. A.; Ho P. M.; Howard V. J.; Kissela B. M.; Kittner S. J.; Lackland D. T.; Lichtman J. H.; Lisabeth L. D.; Makuc D. M.; Marcus G. M.; Marelli A.; Matchar D. B.; McDermott M. M.; Meigs J. B.; Moy C. S.; Mozaffarian D.; Mussolino M. E.; Nichol G.; Paynter N. P.; Rosamond W. D.; Sorlie P. D.; Stafford R. S.; Turan T. N.; Turner M. B.; Wong N. D.; Wylie-Rosett J.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123: e18–e209; 2011.

    Article  PubMed  Google Scholar 

  • Segev H.; Kenyagin-Karsenti D.; Fishman B.; Gerecht-Nir S.; Ziskind A.; Amit M.; Coleman R.; Itskovitz-Eldor J. Molecular analysis of cardiomyocytes derived from human embryonic stem cells. Dev. Growth Differ. 47: 295–306; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T.; Yamato M.; Kikuchi A.; Okano T. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 7: 141–151; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Smits A. M.; van Vliet P.; Metz C. H.; Korfage T.; Sluijter J. P.; Doevendans P. A.; Goumans M. J. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomycoytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat. Protoc. 4: 232–243; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Vallier L.; Touboul T.; Chng Z.; Brimpari M.; Hannan N.; Millan E.; Smithers L. E.; Trotter M.; Rugg-Gunn P.; Weber A.; Pedersen R. A. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4: e6082; 2009.

    Article  PubMed  Google Scholar 

  • van Laake L. W.; Passier R.; Monshouwer-Kloots J.; Nederhoff M. G.; Ward-van Oostwaard D.; Field L. J.; van Echteld C. J.; Doevendans P. A.; Mummery C. L. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat. Protoc. 2: 2551–2567; 2007a.

    Article  PubMed  Google Scholar 

  • van Laake L. W.; Passier R.; Monshouwer-Kloots J.; Verkleij A. J.; Lips D. J.; Freund C.; den Ouden K.; Ward-van Oostwaard D.; Korving J.; Tertoolen L. G.; van Echteld C. J.; Doevendans P. A.; Mummery C. L. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 1: 9–24; 2007b.

    Article  PubMed  Google Scholar 

  • World Health Organization. Factsheet no. 317—cardiovascular diseases. http://www.who.int/mediacentre/factsheets/fs317/en/index.html; 2011. Accessed 11 May 2012.

  • Wu S. M.; Fujiwara Y.; Cibulsky S. M.; Clapham D. E.; Lien C. L.; Schultheiss T. M.; Orkin S. H. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127: 1137–1150; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Xu C.; Police S.; Rao N.; Carpenter M. K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91: 501–508; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Xu X. Q.; Graichen R.; Soo S. Y.; Balakrishnan T.; Rahmat S. N.; Sieh S.; Tham S. C.; Freund C.; Moore J.; Mummery C.; Colman A.; Zweigerdt R.; Davidson B. P. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76: 958–970; 2008.

    PubMed  CAS  Google Scholar 

  • Yang J.; Yamato M.; Okano T. Cell-sheet engineering using intelligent surfaces. MRS Bull. 30: 189–193; 2005.

    Article  CAS  Google Scholar 

  • Yang L.; Soonpaa M. H.; Adler E. D.; Roepke T. K.; Kattman S. J.; Kennedy M.; Henckaerts E.; Bonham K.; Abbott G. W.; Linden R. M.; Field L. J.; Keller G. M. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453: 524–528; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhang M.; Methot D.; Poppa V.; Fujio Y.; Walsh K.; Murry C. E. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33: 907–921; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhu W. Z.; Hauch K. D.; Xu C.; Laflamme M. A. Human embryonic stem cells and cardiac repair. Transplant. Rev. (Orlando) 23: 53–68; 2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Christine Mummery for providing the END-2 cells. This study (BT/PR9985/MED/31/10/2007) was financially supported by the Department of Biotechnology, Govt. of India, New Delhi, India.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawani, H., Nagvenkar, P., Pethe, P. et al. Differentiation of human ES cell line KIND-2 to yield tripotent cardiovascular progenitors. In Vitro Cell.Dev.Biol.-Animal 49, 82–93 (2013). https://doi.org/10.1007/s11626-012-9558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9558-0

Keywords

Navigation